Browsing by Author "Maata, M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPM2.5 and aerosol black carbon in Suva, Fiji(Elsevier, 2016-02-01) Isley, CF; Nelson, PF; Taylor, MP; Mani, FS; Maata, M; Atanacio, AJ; Stelcer, E; Cohen, DDConcentrations of particulate air pollution in Suva, Fiji, have been largely unknown and consequently, current strategies to reduce health risk from air pollution in Suva are not targeted effectively. This lack of air quality data is common across the Pacific Island Countries. A monitoring study, during 2014 and 2015, has characterised the fine particulate air quality in Suva, representing the most detailed study to date of fine aerosol air pollutants for the Pacific Islands; with sampling at City, Residential (Kinoya) and Background (Suva Point) sites. Meteorology for Suva, as it relates to pollutant dispersion for this period of time, has also been analysed. The study design enables the contribution of maritime air and the anthropogenic emissions to be carefully distinguished from each other and separately characterised. Back trajectory calculations show that a packet of air sampled at the Suva City site has typically travelled 724 km in the 24-h prior to sampling, mainly over open ocean waters; inferring that pollutants would also be rapidly transported away from Suva. For fine particulates, Suva City reported a mid-week PM2.5 of 8.6 ± 0.4 μg/m3, averaged over 13-months of gravimetric sampling. Continuous monitoring (Osiris laser photometer) suggests that some areas of Suva may experience levels exceeding the WHO PM2.5 guideline of 10 μg/m3, however, compared to other countries, Fiji's PM2.5 is low. Peak aerosol particulate levels, at all sites, were experienced at night-time, when atmospheric conditions were least favourable to dispersion of air pollutants. Suva's average ambient concentrations of black carbon in PM2.5, 2.2 ± 0.1 μg/m3, are, however, similar to those measured in much larger cities. With any given parcel of air spending only seven minutes, on average, over the land area of Suva Peninsula, these black carbon concentrations are indicative that significant combustion emissions occur within Suva. Many other communities in the Pacific Islands, as well as in Africa, Asia and South America share similar climate and similar burning practices and as such are likely to experience similar aerosol black carbon loadings. These black carbon levels indicate the need for combustion emissions, particularly those from open burning and diesel usage, to be addressed in air policy.© 2016, Elsevier Ltd.
- ItemReducing mortality risk by targeting specific air pollution sources: Suva, Fiji(Elsevier, 2018-01-15) Isley, CF; Nelson, PF; Taylor, MP; Stelcer, E; Atanacio, AJ; Cohen, DD; Mani, FS; Maata, MHealth implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM2.5: effective aerodynamic diameter 2.5 μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM2.5 samples from Suva, spanning one year. Sources of PM2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning.© 2017 Elsevier B.V.