Browsing by Author "Luo, HQ"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemDynamical mechanism of phase transitions in a-site ferroelectric relaxor (Na1/2Bi1/2)TiO3(APS Physics, 2014-10-13) Deng, GC; Danilkin, SA; Zhang, HW; Imperia, P; Li, XB; Zhao, X; Luo, HQThe dynamical phase transition mechanism of (Na1/2Bi1/2)TiO3 (NBT) was studied using inelastic neutron scattering. Softening was observed of multiple phonon modes in the phase transition sequence of NBT. As usual, the softening of the zone center transverse optical modes Δ5 and Σ3 was observed in the (200) and (220) zones, showing the Ti vibration instabilities in TiO6 octahedra for both cubic-tetragonal (C-T) and tetragonal-rhombohedral (T-R) phase transitions. In these two phase transitions, however, Ti4+ has different preferential displacement directions. Surprisingly, the longitudinal optic mode also softens significantly toward the zone center in the range of the transition temperature, indicating the Na+/Bi3+ vibration instability against TiO6 octahedra during the T-R phase transition. Strong inelastic diffuse scattering shows up near M(1.5, 0.5, 0) and R(1.5, 1.5, 0.5) in the tetragonal and rhombohedral phases, respectively, indicating the condensations of the M3 and R25 optic modes for the corresponding transitions. This reveals the different rotation instabilities of TiO6 in the corresponding transition temperature range. Bottleneck or waterfall features were observed in the dispersion curves at certain temperatures but did not show close correlations to the formation of polar nanoregions. Additional instabilities could be the origin of the complexity of phase transitions and crystallographic structures in NBT. © 2014 American Physical Society.
- ItemDynamical mechanism of phase transitions in a-site ferroelectric relaxor (Na1/2Bi1/2)TiO3(Australian Institute of Physics, 2016-02-02) Deng, GC; Danilkin, SA; Imperia, P; Li, X; Zhao, XB; Luo, HQ
- ItemDynamical mechanism of phase transitions in a-site ferroelectric relaxor (Na1/2Bi1/2)TiO3(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Deng, GC; Danilkin, SA; Zhang, HW; Imperia, P; Li, XB; Zhao, X; Luo, HQThe dynamical phase transition mechanism of (Na1/2Bi1/2)TiO3 (NBT) was studied using inelastic neutron scattering. Softening of multiple phonon modes were observed to correlate with the phase transition sequence of NBT. As usual, the softening of the zone centre transverse optic (TO) modes Δ5 and Σ3 was observed in (200) and (220) zone, showing the Ti vibration instabilities in TiO6 octahera for both cubic-tetragonal (C-T) and tetragonal rhombohedral (T-R) phase transitions. In this two phase transitions, however, Ti4+ has different preferential displacement directions. Surprisingly, the longitudinal optic (LO) mode also soften significantly toward zone centre in the vicinity range of the transition temperature, indicating the Na+/Bi3+ vibration instability against TiO6 octahera during the R-T phase transition. Strong inelastic diffuse scattering shows up near M(1.5, 0.5, 0) and R(1.5, 1.5, 0.5) in the tetragonal and rhombohedral phases, respectively, indicating the condensations of the M3 and R25 optic modes for the corresponding phase transitions. This reveals the rotation instabilities of TiO6 in the corresponding phase transition temperature range. Bottleneck or waterfall features were observed in the dispersion curves at certain temperatures, but did not show the close correlations to the formation of polar nanoregions (PNRs). Additional instabilities are the origin of the complexity of phase transitions and crystallographic structures in NBT.
- ItemElectron doping effects on the spin spectroscopy of BaFe2-xNixAs2 superconductors(International Conference on Neutron Scattering, 2017-07-12) Luo, HQ; Gong, DL; Xie, T; Lu, XY; Kamazawa, K; Iida, K; Kajimoto, R; Ivanov, AS; Adroja, DT; Kulda, J; Danilkin, SA; Deng, GC; Li, SL; Dai, PCHigh-temperature superconductivity in iron pnictides emerges from electron or hole doped parent compounds with antiferromagnetic order, which is argued to be associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons. With more than 6 years\' efforts, we have used time-of-flight neutron spectroscopy to extensively map out the spin excitations in the electron-doped BaFe2-xNixAs2 especially around the overdoped zone boundary of superconductivity. We have found that the high energy spin fluctuations survive in the extremely high doping x=0.6 far beyond the superconducting dome, but the low energy spin excitations including the spin resonance mode is very sensitive to the electron dopings, by finally forming a large spin gap just after the disappearance of superconductivity in the overdoped regime. Further polarized neutron analysis indicate that the spin gap actually is anisotropic, and the longitudinal mode of spin fluctuations, as a hallmark of the itinerant magnetism from Fermi surface nesting, is totally eliminated together with the hole pockets near the electron-overdoped zone boundary of superconductivity.Our results suggest that the strong fluctuations from local moments give framework for magnetic interaction, while itinerant spin excitations originated from Fermi surface nesting are crucial to the superconductivity in iron pnictides.
- ItemElectron doping evolution of the anisotropic spin excitations in BaFe(2-x)NixAs2(Americal Physical Society, 2012-07-10) Luo, HQ; Yamani, Z; Chen, YC; Lu, XY; Wang, M; Li, SL; Maier, TA; Danilkin, SA; Adroja, DT; Dai, PCWe use inelastic neutron scattering to systematically investigate the Ni-doping evolution of the low-energy spin excitations in BaFe(2-x)NixAs2 spanning from underdoped antiferromagnet to overdoped superconductor (0.03 <= x <= 0.18). In the undoped state, BaFe2As2 changes from paramagnetic tetragonal phase to orthorhombic antiferromagnetic (AF) phase below about 138 K, where the low-energy (<=similar to 80 meV) spin waves form transversely elongated ellipses in the [H, K] plane of the reciprocal space. Upon Ni doping to suppress the static AF order and induce superconductivity, the c-axis magnetic exchange coupling is rapidly suppressed and the momentum distribution of spin excitations in the [H, K] plane is enlarged in both the transverse and longitudinal directions with respect to the in-plane AF ordering wave vector of the parent compound. As a function of increasing Ni-doping x, the spin excitation widths increase linearly but with a larger rate along the transverse direction. These results are in general agreement with calculations of dynamic susceptibility based on the random phase approximation (RPA) in an itinerant electron picture. For samples near optimal superconductivity at x approximate to 0.1, a neutron spin resonance appears in the superconducting state. Upon further increasing the electron doping to decrease the superconducting transition temperature T-c, the intensity of the low-energy magnetic scattering decreases and vanishes concurrently with vanishing superconductivity in the overdoped side of the superconducting dome. Comparing with the low-energy spin excitations centered at commensurate AF positions for underdoped and optimally doped materials (x <= 0.1), spin excitations in the overdoped side (x = 0.15) form transversely incommensurate spin excitations, consistent with the RPA calculation. Therefore, the itinerant electron approach provides a reasonable description to the low-energy AF spin excitations in BaFe(2-x)NixAs2. © 2012, American Physical Society.
- ItemElectron doping evolution of the magnetic excitations in BaFe(2-x)NixAs2(American Physical Society., 2013-10-25) Luo, HQ; Lu, XY; Zhang, R; Wang, M; Goremychkin, EA; Adroja, DT; Danilkin, SA; Deng, GC; Yamani, Z; Dai, PCWe use inelastic neutron scattering (INS) spectroscopy to study the magnetic excitations spectra throughout the Brillouin zone in electron-doped iron pnictide superconductors BaFe2-xNixAs2 with x = 0.096,0.15,0.18. While the x = 0.096 sample is near optimal superconductivity with T-c = 20 K and has coexisting static incommensurate magnetic order, the x = 0.15,0.18 samples are electron overdoped with reduced T-c of 14 and 8 K, respectively, and have no static antiferromagnetic (AF) order. In previous INS work on undoped (x = 0) and electron optimally doped (x = 0.1) samples, the effect of electron doping was found to modify spin waves in the parent compound BaFe2As2 below similar to 100 meV and induce a neutron spin resonance at the commensurate AF ordering wave vector that couples with superconductivity. While the new data collected on the x = 0.096 sample confirm the overall features of the earlier work, our careful temperature dependent study of the resonance reveals that the resonance suddenly changes its Q width below T-c similar to that of the optimally hole-doped iron pnictides Ba0.67K0.33Fe2As2. In addition, we establish the dispersion of the resonance and find it to change from commensurate to transversely incommensurate with increasing energy. Upon further electron doping to overdoped iron pnictides with x = 0.15 and 0.18, the resonance becomes weaker and transversely incommensurate at all energies, while spin excitations above similar to 100 meV are still not much affected. Our absolute spin excitation intensity measurements throughout the Brillouin zone for x = 0.096,0.15,0.18 confirm the notion that the low-energy spin excitation coupling with itinerant electron is important for superconductivity in these materials, even though the high-energy spin excitations are weakly doping dependent. © 2013, American Physical Society.
- ItemNeutron diffuse scattering of (1 − x)(Na0.5Bi0.5)TiO3–xBaTiO3 relaxor ferroelectric single crystals(Elsevier, 2014-09-01) Zhang, HW; Deng, GC; Studer, AJ; Li, XB; Zhao, X; Luo, HQPeculiar L-shaped diffuse streaks along <0 0 1>pc were observed in (Na0.5Bi0.5)TiO3 (NBT) below the Burns temperature, revealing the existence of polar nanoregions (PNRs). The displacement of Bi3+ cations is ∼0.26 Å along <0 0 1>pc in the PNRs, with a size of ∼13 Å in NBT. The BaTiO3 doping drives the diffuse scattering patterns to evolve from the L-shape into an ellipsoidal along <0 1 1 >pc in (Na0.5Bi0.5)TiO3–xBaTiO3. An abnormally large correlation length was observed in the morphotropic phase boundary composition with x = 0.05. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
- ItemPreferred spin excitations in the bilayer iron-based superconductor CaKðFe0.96Ni0.04Þ4As4 with spin-vortex crystal order(American Physical Society, 2022-03-31) Liu, C; Bourges, P; Sidis, Y; He, GH; Bourdarot, F; Danilkin, SA; Ghosh, H; Ghosh, S; Ma, XY; Li, SL; Li, Y; Luo, HQ; Xie, TSpin-orbit coupling (SOC) is a key to understand the magnetically driven superconductivity in iron-based superconductors, where both local and itinerant electrons are present and the orbital angular momentum is not completely quenched. Here, we report a neutron scattering study on the bilayer compound CaK(Fe0.96Ni0.04)4As4 with superconductivity coexisting with a noncollinear spin-vortex crystal magnetic order that preserves the tetragonal symmetry of the Fe-Fe plane. In the superconducting state, two spin resonance modes with odd and even L symmetries due to the bilayer coupling are found similar to the undoped compound CaKFe4As4 but at lower energies. Polarization analysis reveals that the odd mode is c-axis polarized, and the low-energy spin anisotropy can persist to the paramagnetic phase at high temperature, which closely resembles other systems with in-plane collinear and c-axis biaxial magnetic orders. These results provide the missing piece of the puzzle on the SOC effect in iron-pnictide superconductors, and also establish a common picture of c-axis preferred magnetic excitations below Tc regardless of the details of magnetic pattern or lattice symmetry. © 2022 American Physical Society
- ItemSpin dynamics of edge-sharing spin chains in SrCa13Cu24O41(American Physical Society, 2018-11-12) Deng, GC; Yu, DH; Mole, RA; Pomjakushina, E; Conder, K; Kenzelmann, M; Yano, SI; Wang, CW; Rule, KC; Gardner, JS; Luo, HQ; Li, S; Ulrich, C; Imperia, P; Ren, W; Cao, SX; McIntyre, GJThe low-energy magnetic excitation from the highly Ca-doped quasi-one-dimensional magnet SrCa13Cu24O41 was studied in the magnetic ordered state by using inelastic neutron scattering. We observed the gapless spin-wave excitation, dispersive along the a and c axes but nondispersive along the b axis. Such excitations are attributed to the spin wave from the spin-chain sublattice. Model fitting to the experimental data gives the nearest-neighbor interaction Jc as 5.4 meV and the interchain interaction Ja=4.4meV. Jc is antiferromagnetic and its value is close to the nearest-neighbor interactions of the similar edge-sharing spin-chain systems such as CuGeO3. Comparing with the hole-doped spin chains in Sr14Cu24O41, which shows a spin gap due to spin dimers formed around Zhang-Rice singlets, the chains in SrCa13Cu24 O41 show a gapless excitation in this paper. We ascribe such a change from gapped to gapless excitations to holes transferring away from the chain sublattice into the ladder sublattice upon Ca doping. ©2018 American Physical Society