Browsing by Author "Liu, Y"
Now showing 1 - 20 of 49
Results Per Page
Sort Options
- ItemBioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings(Elsevier, 2021-06) Liu, Y; Wu, S; Southam, G; Chan, TS; Lu, YR; Paterson, DJ; Huang, LThe development of hardpan caps has great potential in rehabilitating sulfidic and metallic tailings, which may be accelerated by using exogenous Acidithiobacillus species. The present study aims to establish a bioaugmentation process with exogenous Acidithiobacillus species for accelerating the weathering of sulfidic minerals and formation of secondary mineral gels as precursors for hardpan structure development in a microcosm experiment. Exogenous Acidithiobacillus thiooxidans (ATCC 19377) and A. ferrooxidans (DSM 14882) were inoculated in a sulfidic Pb-Zn tailing containing negligible indigenous Acidithiobacillus species for accelerating the weathering of pyrite and metal sulfides. Microspectroscopic analysis revealed that the weathering of pyrite and biotite-like minerals was rapidly accelerated by exogenous Acidithiobacillus species, leading to the formation of secondary jarosite-like mineral gels and cemented profile in the tailings. Meanwhile, approximately 28% Zn liberated from Zn-rich minerals undergoing weathering was observed to be re-immobilized by Fe-rich secondary minerals such as jarosite-like mineral. Moreover, Pb-bearing minerals mostly remained undissolved, but approximately 30% Pb was immobilized by secondary Fe-rich minerals. The present findings revealed the critical role of exogenous Acidithiobacillus species in accelerating the precursory process of mineral weathering and secondary mineral formation for hardpan structure development in sulfidic Pb-Zn tailings. © 2020 Elsevier B.V.
- ItemCoexistence of ferroelectricity and magnetism in transition-metal-doped n = 3 aurivillius phases(Institute of Physics, 2008-01-16) Sharma, N; Kennedy, BJ; Elcombe, MM; Liu, Y; Ling, CDMagnetic-cation-doped three-layer Aurivillius phases Bi2-xSr2+x(Nb/Ta)(2+x)M1-xO12, x approximate to 0.5 and M = Ru4+, Ir4+ or Mn4+, are shown to have the same orthorhombic space group symmetry and similar dielectric and ferroelectric properties as their (non-magnetic) ferroelectric parent compounds Bi2-xSr2+xNb2+xTi1-xO12, x = 0, 0.5. The magnetic-cation-doped phases also show evidence for short-range ferromagnetic (M = Mn) and antiferromagnetic (M = Ru and Ir) exchange, demonstrating the potential of these naturally layered phases as templates for multiferroic (magnetoelectric) materials. © 2008, Institute of Physics
- ItemCollective nonlinear electric polarization via defect-driven local symmetry breaking(Royal Society of Chemistry, 2019-05-17) Dong, W; Cortie, DL; Lu, T; Sun, QB; Narayanan, N; Hu, WB; Jacob, L; Li, Q; Yu, DH; Chen, H; Chen, AP; Wei, XY; Wang, G; Humphrey, MG; Frankcombe, TJ; Liu, YIn this work, we report the defect-mediated, abnormal non-linear polarization behavior observed in centrosymmetric rutile TiO2 where less than 1 at% of sterically mismatched Mg2+ ions are introduced to create ferroelectric-like polarization hysteresis loops. It is found that the Image ID:c9mh00516a-t2.gif defect cluster produces a dipole moment exceeding 6 Debye, with a rotatable component. Such a polarization is further enhanced by the displacement of neighboring Ti4+ ions. The coupling between such defect-driven symmetry-breaking regions generates a collective nonlinear electrical polarization state that persists to high temperatures. More importantly, an observation of abnormal bias shift of polarization hysteresis suggests an antiparallel alignment of certain dipoles frozen relative to the external poling electric field, which is associated with oxygen vacancy hopping. This result challenges the long-standing notion of parallel alignment of dipoles with the external electric field in ferroelectrics. This work also reveals an unexpected new form of non-linear dielectric polarization (non-ferroelectricity) in solid-state materials. © Royal Society of Chemistry 2024
- ItemA correlated electron diffraction, in situ neutron diffraction and dielectric properties investigation of poled (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics(American Institute of Physics, 2011-10-15) Wang, J; Liu, Y; Withers, RL; Studer, AJ; Li, Q; Norén, L; Guo, YPA correlated electron diffraction, temperature-dependent in situ neutron diffraction, and temperature-dependent dielectric properties investigation of poled (1-x)Bi(0.5)Na(0.5)TiO(3)-xBaTiO(3) (BNTBT100x) (x = 0.04, 0.07, and 0.12) samples has been carried out. The results show that the depolarization temperature, T(d), of the rhombohedral BNTBT 4 sample is associated with the disappearance of G +/- 1/2 [111]*(p) satellite reflections and a(-)a(-)a(-) octahedral tilting while that of the BNTBT 12 sample is associated with a metrically tetragonal to metrically cubic or pseudo-cubic symmetry. In the case of the poled BNTBT 7 sample in the MPB region, the dielectric properties show a quite distinct two stage transition from a room temperature clearly metrically tetragonal phase again to a metrically cubic or pseudo-cubic symmetry above 150 degrees C. There is no apparent change in its average structure in vicinity of T(d) in BNTBT 7. Electron diffraction shows the presence of considerable octahedral tilt twin disorder in all three samples. (C) 2011 American Institute of Physics.
- ItemCritical role of the coupling between the octahedral rotation and a-site ionic displacements in PbZrO3-based antiferroelectric materials investigated by in situ neutron diffraction(American Physical Society, 2017-12-21) Lu, T; Studer, AJ; Yu, DH; Withers, RL; Feng, Y; Chen, H; Islam, SS; Xu, Z; Liu, YThis in situ neutron-diffraction study on antiferroelectric (AFE) Pb0.99(Nb0.02Zr0.65Sn0.28Ti0.05)O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A-site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E-field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A-site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples’ FE and AFE properties. ©2017 American Physical Society - Open access
- ItemData quantity governance for machine learning in materials science(Oxford University Press (OUP), 2023-05-31) Liu, Y; Yang, ZW; Zou, XX; Ma, S; Liu, D; Avdeev, M; Shi, SData-driven machine learning (ML) is widely employed in the analysis of materials structure–activity relationships, performance optimization and materials design due to its superior ability to reveal latent data patterns and make accurate prediction. However, because of the laborious process of materials data acquisition, ML models encounter the issue of the mismatch between a high dimension of feature space and a small sample size (for traditional ML models) or the mismatch between model parameters and sample size (for deep-learning models), usually resulting in terrible performance. Here, we review the efforts for tackling this issue via feature reduction, sample augmentation and specific ML approaches, and show that the balance between the number of samples and features or model parameters should attract great attention during data quantity governance. Following this, we propose a synergistic data quantity governance flow with the incorporation of materials domain knowledge. After summarizing the approaches to incorporating materials domain knowledge into the process of ML, we provide examples of incorporating domain knowledge into governance schemes to demonstrate the advantages of the approach and applications. The work paves the way for obtaining the required high-quality data to accelerate materials design and discovery based on ML. © The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
- ItemDefect structure and property consequence when small Li+ ions meet BaTiO3(American Physical Society, 2020-08-31) Narayanan, N; Lou, Q; Rawal, A; Lu, T; Liu, Z; Chen, J; Langley, J; Chen, H; Hester, JR; Cox, N; Fuess, H; McIntyre, GJ; Li, G; Yu, DH; Liu, YIn the present work the longstanding issue of the structure and dynamics of smaller ions in oxides and its impact on the properties was investigated on 7% Li-doped BaTiO3. The investigation combined several techniques, notably neutron powder diffraction (NPD), nuclear magnetic resonance (7Li-NMR), electron paramagnetic resonance (EPR), electron microprobe, electric polarization (EP) measurement, and electronic structure calculations based on density-functional theory (DFT). Electron microprobe confirmed multiple phases, one containing incorporated Li in the BaTiO3 host lattice and another glassy phase which breaks the host lattice due to excessive Li accumulation. While the average structure of Li in BaTiO3 could not be determined by NPD, 7Li-NMR revealed one broad “disordered” and multiple “ordered” peaks. Local structure models with different defect types involving Li+ were modeled and the corresponding chemical shifts (δ) were compared with experimental values. It is found that the closest defect model describing the ordered peaks, is with Ti4+ being replaced by four Li+ ions. The biexponential behavior of the spin-lattice relaxation of the ordered peaks each with a short and a long relaxation discloses the existence of paramagnetic ions. Finally, EPR revealed the existence of the paramagnetic ion Ti3+ as a charge-transfer defect. DFT calculations disclosed local antipolar displacements of Ti ions around both types of defect sites upon insertion of Li+. This is in accordance with the experimental observation of pinching effects of the EP in Li-doped BaTiO3. These studies demonstrate the huge impact of the local structure of the doped smaller/lighter ions on the functional properties of oxides. ©2020 American Physical Society
- ItemDefect structure-property correlations in Li doped BaTiO3(Australian Institute of Nuclear Science and Engineering (AINSE), 2020-11-11) Narayanan, N; Lou, Q; Rawal, A; Lu, T; Liu, Z; Chen, J; Langley, J; Chen, H; Hester, JR; Cox, N; Fuess, H; McIntyre, GJ; Li, G; Yu, DH; Liu, Y; Li, GIn the present work we investigate the important issue of the structure and dynamics of smaller ions in oxides and the resulting impact on its functional properties. For this purpose, we selected a 7% Li-doped BaTiO3. Li is a vital ingredient in novel energy storage technologies such as Li-ion batteries. The smaller Li-ion can influence the structural stability, homogeneity, local environment, and dynamic behavior of the host lattice, affecting and optimizing the dielectric and multiferroic properties of novel polar functional materials [1-2]. However, the Li-ion positions and dynamics in functional materials are not completely understood, controversially discussed and are the subject of extensive ongoing research [3]. Furthermore, sample inhomogeneity due to Li migration to the grain boundary and/or development of multiple phases complicates the elucidation of the structure-property correlations that may lead to incorrect interpretations [4]. The selection of BaTiO3 as the host lattice is due to materials based on this being considered as the alternative to the piezoelectric lead zirconate titanate, citing environmental issues [5]. BaTiO3 also crystallizes in a simple perovskite structure and Li ions can be effectively doped into it at lower doping levels. Very recently, field-dependent electric polarization measurements on BaTiO3 exhibited a polarization–electric field double hysteresis loop upon Li doping [4]. These drastic changes to the electric polarization, related to the doping poses a good test case for the investigation of the Li induced defect structure model and its influence on the functional properties. To elucidate the above structure-property correlations, we combined several techniques, such as neutron powder diffraction electron microprobe associated with the wavelength-dispersive spectroscopy, 7Li nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance (EPR), electric polarization measurement, and theoretical calculations based on density functional theory [6].
- ItemDisordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi2O3–MIIO–Nb2O5 (M=Mg, Ni) systems(Elsevier, 2007-09) Nguyen, HB; Norén, L; Liu, Y; Withers, RL; Wei, XY; Elcombe, MMThe disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3–MIIO–Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O' A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (1/2, 1/2, 1/2) to 96 h (1/2, 1/2-éA, 1/2 + éA while the O' oxygen was shifted from position 8b (3/8, 3/8, 3/8) to Wyckoff position 32e (3/8 + éọ, 3/8 + éọ, 3/8 + éọ). The refined displacement magnitudes off the 16d and 8b sites for the A and O' sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively. © 2007, Elsevier Ltd.
- ItemEffect of electric field and temperature on average structure and domain wall motion in 0.93Bi(0.5)Na(0.5)TiO(3)-0.07BaTiO(3) ceramic(Hindawi Publishing Corporation, 2013-06-24) Wang, J; Liu, Y; Studer, AJ; Norén, L; Withers, RLIn situ neutron powder diffraction patterns and dielectric spectra of 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 ceramic were investigated under different electrical fields and temperatures. An electric-field-induced phase transition from metrically cubic to metrically tetragonal, associated with strong domain wall motion, occurs. Such induced phase and domain wall motion are unchanged until the high-temperature phase transition occurs from metrically tetragonal to metrically cubic. All these changes are irrelevant to the observed depolarization temperature (75°C). The depolarization behaviour is thus suggested to be associated with the local structure caused by the octahedral tilt twinning disorder. © 2013, Jian Wang et al.
- ItemEnergy and temperature dependence of rigid unit modes in AlPO4-5(Royal Society of Chemsitry, 2015-07-17) Berlie, A; Kearley, GJ; Liu, Y; Yu, DH; Mole, RA; Ling, CD; Withers, RLFor structures that can be treated as networks of rigid, corner-connected polyhedra, the dominant distortion modes can be described by so-called rigid unit modes that are close to zero frequency. This type of behaviour is common in zeolitic/zeotypic materials such as the AlPO4 family of compounds and has been suggested by some authors to play a significant role in molecular diffusion within the pores of such compounds. We explore the energy and temperature dependence of these modes in AlPO4-5 using inelastic neutron scattering and heat capacity measurements. Ab initio based computational modelling is also used to assign the observed dynamic behaviour to rigid unit modes. We observe that these rigid unit modes persist down to very low temperatures and show no signs of freezing out.© 2015, the Owner Societies.
- ItemFabrication of sub-stoichiometric Ti2O3 for room temperature thermoelectric energy regeneration: tuning of structural and electronic properties via defects engineering(Australian Institute of Nuclear Science and Engineering (AINSE), 2018-11-19) Yang, J; Liu, Y; Yu, DH; Li, STitanium oxides has drawn extensive attention as functional electronic materials in the past few years, due to their unique layered structure and physical properties. Sub-stoichiometric titania are particularly interesting non-toxic materials for thermoelectric applications because of their high electrical conductivity with possible low phonon thermal conductivities originated from phonon scatterings at ordered defect planes. Hereby, layered sub-stoichiometric Ti2O3 material has been successfully fabricated by densifications of the ball-milled precursors with spark plasma sinterings. The experiments were performed on densified Ti2O3 samples with 0.5, 3 and 10 h ball-milling times to compare the changes in PDOS. The application of high-energy ball milling could significantly de crease the grain size in the SPS-densified bulk sample, and thus affect the phonon behaviours. The XRD results showed with the increasing of ball milling hours, the percentage of Ti3O5 increased while Ti2O3 is still the main phase. Measurements of phonon density-of-states (PDOS) were per formed with the PELICAN time-of-flight neutron spectrometer in the energy-gain mode at ANSTO, at 200, 300, 500 and 650 K, respectively. The overall shapes of the GDOS are very similar across the three samples, with three peaks located at around 20, 40, and 60 meV and matched well with the calculated PDOS of Ti2O3, indicating the dominate phase for three samples are still Ti2O3. With the temperature increasing, the peak intensity at around ~20 meV increased, however, the red-shifts and intensity decreases were observed at the 40 and 60 meV phonon DOS peaks (as indication of anharmonic effects). This suggested that the acoustic phonons response differently to temperature increase compared to optical phonons. The intensities at between 50 to 60 meV increases for the 10H spectrum, compared to the other two. This is probably because of the excitation of the phonon states in Ti3O5, as the increased Ti3O5 percentage in 10H sample. Our results suggested the measurement matched well with the theoretical study, which indicates the structural changes could have played significant roles in determining the phononic structure of sub-stoichiometric Ti2O3 based material. © The Authors.
- ItemThe formation of defect-pairs for highly efficient visible-light catalysts(Wiley, 2017-01-23) Sun, QB; Cortie, DL; Zhang, SY; Frankcombe, TJ; She, GW; Gao, J; Sheppard, LR; Hu, WB; Chen, H; Zhuo, SJ; Chen, DH; Withers, RL; McIntyre, GJ; Yu, DH; Shi, WS; Liu, YHighly efficient visible-light catalysts are achieved through forming defect-pairs in TiO2 nanocrystals. This study therefore proposes that fine-tuning the chemical scheme consisting of charge-compensated defect-pairs in balanced concentrations is a key missing step for realizing outstanding photocatalytic performance. This research benefits photocatalytic applications and also provides new insight into the significance of defect chemistry for functionalizing materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemGenerative artificial intelligence and its applications in materials science: current situation and future perspectives(Elsevier, 2023-07) Liu, Y; Yang, ZW; Yu, ZY; Liu, Z; Liu, D; Lin, H; Li, MQ; Ma, S; Avdeev, M; Shi, SQGenerative Artificial Intelligence (GAI) is attracting the increasing attention of materials community for its excellent capability of generating required contents. With the introduction of Prompt paradigm and reinforcement learning from human feedback (RLHF), GAI shifts from the task-specific to general pattern gradually, enabling to tackle multiple complicated tasks involved in resolving the structure-activity relationships. Here, we review the development status of GAI comprehensively and analyze pros and cons of various generative models in the view of methodology. The applications of task-specific generative models involving materials inverse design and data augmentation are also dissected. Taking ChatGPT as an example, we explore the potential applications of general GAI in generating multiple materials content, solving differential equation as well as querying materials FAQs. Furthermore, we summarize six challenges encountered for the use of GAI in materials science and provide the corresponding solutions. This work paves the way for providing effective and explainable materials data generation and analysis approaches to accelerate the materials research and development. © 2023 The Authors. Published by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- ItemHighly efficient visible light catalysts driven by Ti3+-VO-2Ti4+-N3− defect clusters(Wiley, 2018-10-13) Sun, QB; Zhang, SY; Cortie, DL; Langley, J; Cox, N; Frankcombe, TJ; Gao, J; Chen, H; Withers, RL; Kremer, F; Yu, DH; Brink, F; Shi, WS; Liu, YLocal defect structures play significant roles on material properties, but they are seriously neglected in the design, synthesis, and development of highly efficient TiO2-based visible light catalysts (VLCs). Here, we take anatase TiO2 nanocrystals that contain (Ti3+, N3−) ions and have the complicated chemical formula of (Ti1-x4+Tix3+)(O2-2-y-zNy3-□z) as an example, and point out that the formation of Ti3+-VO-2Ti4+-N3− local defect clusters is a key missing step for significantly enhancing VLC properties of host TiO2 nanocrystals. Experimental and theoretical investigations also demonstrate the emergent behaviors of these intentionally introduced defect clusters for developing highly efficient VLCs. This research thus not only provides highly efficient visible light catalysts for various practical applications but also addresses the significance of local defect structures on modifying material properties. © 2019 Wiley-VCH Verlag GmbH & Co.
- ItemHighly efficient visible light catalysts driven by Ti3+‐VO‐2Ti4+‐N3− defect clusters(Wiley, 2018-10-13) Sun, QB; Zhang, SY; Cortie, DL; Langley, J; Cox, N; Frankcombe, TJ; Gao, J; Chen, H; Withers, RL; Kremer, F; Yu, DH; Brink, F; Shi, WS; Liu, YLocal defect structures play significant roles on material properties, but they are seriously neglected in the design, synthesis, and development of highly efficient TiO2‐based visible light catalysts (VLCs). Here, we take anatase TiO2 nanocrystals that contain (Ti3+, N3−) ions and have the complicated chemical formula of ()(□z) as an example, and point out that the formation of Ti3+‐VO‐2Ti4+‐N3− local defect clusters is a key missing step for significantly enhancing VLC properties of host TiO2 nanocrystals. Experimental and theoretical investigations also demonstrate the emergent behaviors of these intentionally introduced defect clusters for developing highly efficient VLCs. This research thus not only provides highly efficient visible light catalysts for various practical applications but also addresses the significance of local defect structures on modifying material properties. © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemHydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study(Institute of Physics, 2009-05-20) Brown, CM; Liu, Y; Yildirim, T; Peterson, VK; Kepert, CJHydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu-3(1,3,5-benzenetricarboxylate)(2)), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H-2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H-2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H-2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed. © 2009, Institute of Physics
- ItemIdentifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning(Elsevier, 2021-03-01) Wang, AP; Zou, ZY; Wang, D; Liu, Y; Li, YJ; Wu, JM; Avdeev, M; Shi, SRedox mediators are promised to thermodynamically resolve the cathode irreversibility of Li-air battery. However, the sluggish chemical reaction between mediators and discharge products severely restrains fast charging. Here, we combine ab initio calculations and machine learning method to investigate the reaction kinetics between LiOH and I2, and demonstrate the critical role of the disorder degree of LiOH and the solvent effect. The Li+ desorption is identified as the rate determining step (rds) of the reaction. While LiOH turns from the crystalline to disordered/amorphous structure, the rds energy barrier will be reduced by ∼500 meV. The functional group of the solvent is detected as the key to regulating the solvation effect and phosphate-based solvent is predicted to accelerate the decomposition kinetics most with the strongest solvation capability. These findings indicate that the faster reaction kinetics between mediators and the discharge products can be achieved by rational discharge product structure regulation and appropriate solvent selection. © 2020 Elsevier B.V.
- ItemIn-situ neutron diffraction study of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals under uniaxial mechanical stress(American Institute of Physics, 2012-04-26) Li, Q; Liu, Y; Luzin, V; Studer, AJ; Wan, YH; Li, ZR; Norén, L; Withers, RL; Xu, ZIn this paper, we report the phase transition behavior of ternary relaxor ferroelectric single crystals of 0.25Pb(In1/2Nb1/2)O-3-0.44Pb(Mg1/3Nb2/3)O-3-0.31PbTiO(3) subject to a uniaxial mechanical stress up to 400 MPa. The resultant in situ neutron diffraction data are interpreted in terms of the polarization rotation theory and provide direct structural evidence for the stress-induced polarization rotation pathway deduced from studies of macroscopic physical properties under stress. It is suggested that an intermediate, metastable orthorhombic phase is induced above a critical pressure of similar to 75 MPa. This critical stress level appears to be unaffected by sample poling although the ground states (at zero stress) for the poled and unpoled crystals are different. The critical stress level, however, does decrease with increasing temperature. The elastic behavior of the intermediate phases is also studied based on a calculation of the associated lattice strains. (C) 2012 American Institute of Physics.
- ItemInelastic neutron scattering of H-2 adsorbed in HKUST-1(Elsevier, 2007-10-31) Liu, Y; Brown, CM; Neumann, DA; Peterson, VK; Kepert, CJA series of inelastic neutron scattering (INS) investigations of hydrogen adsorbed in activated HKUST-1 (Cu-3(1,3,5-benzenetricarboxylate)(2)) result in INS spectra with rich features, even at very low loading (< 1.0 H-2:Cu). The distinct inelastic features in the spectra show that there are three binding sites that are progressively populated when the H-2 loading is less than 2.0 H-2:Cu, which is consistent with the result obtained from previous neutron powder diffraction experiments. The temperature dependence of the INS spectra reveals the relative binding enthalpies for H-2 at each site. © 2007, Elsevier Ltd.
- «
- 1 (current)
- 2
- 3
- »