Browsing by Author "Liu, GJ"
Now showing 1 - 20 of 24
Results Per Page
Sort Options
- ItemThe 18 kDa translocator protein, microglia and neuroinflammation(Wiley, 2014-10-26) Liu, GJ; Middleton, RJ; Hatty, CR; Kam, WWY; Chan, RHY; Pham, TQ; Harrison-Brown, M; Dodson, E; Veale, K; Banati, RBThe 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of “neuroinflammation” indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the “translocation” function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of “neuroinflammation.” © 2014 The Authors
- ItemCellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain(Multidisciplinary Digital Publishing Institute (MDPI), 2018-09-11) Betlazar, C; Harrison-Brown, M; Middleton, RJ; Banati, RB; Liu, GJThe inducible expression of the mitochondrial translocator protein 18 kDa (TSPO) by activated microglia is a prominent, regular feature of acute and chronic-progressive brain pathology. This expression is also the rationale for the continual development of new TSPO binding molecules for the diagnosis of “neuroinflammation” by molecular imaging. However, there is in the normal brain an ill-defined, low-level constitutive expression of TSPO. Taking advantage of healthy TSPO knockout mouse brain tissue to validate TSPO antibody specificity, this study uses immunohistochemistry to determine the regional distribution and cellular sources of TSPO in the normal mouse brain. Fluorescence microscopy revealed punctate TSPO immunostaining in vascular endothelial cells throughout the brain. In the olfactory nerve layers and glomeruli of the olfactory bulb, choroid plexus and ependymal layers, we confirm constitutive TSPO expression levels similar to peripheral organs, while some low TSPO expression is present in regions of known neurogenesis, as well as cerebellar Purkinje cells. The distributed-sparse expression of TSPO in endothelial mitochondria throughout the normal brain can be expected to give rise to a low baseline signal in TSPO molecular imaging studies. Finally, our study emphasises the need for valid and methodologically robust verification of the selectivity of TSPO ligands through the use of TSPO knockout tissues. © 2018 The Authors
- ItemCheckpoints to the brain: directing myeloid cell migration to the central nervous system(MDPI, 2016-12-02) Harrison-Brown, M; Liu, GJ; Banati, RBMyeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets. © 2016 MDPI.
- ItemControl of neuroinflammation through radiation-induced microglial changes(MDPI, 2021-09-10) Boyd, A; Byrne, S; Middleton, RJ; Banati, RB; Liu, GJMicroglia, the innate immune cells of the central nervous system, play a pivotal role in the modulation of neuroinflammation. Neuroinflammation has been implicated in many diseases of the CNS, including Alzheimer’s disease and Parkinson’s disease. It is well documented that microglial activation, initiated by a variety of stressors, can trigger a potentially destructive neuroinflammatory response via the release of pro-inflammatory molecules, and reactive oxygen and nitrogen species. However, the potential anti-inflammatory and neuroprotective effects that microglia are also thought to exhibit have been under-investigated. The application of ionising radiation at different doses and dose schedules may reveal novel methods for the control of microglial response to stressors, potentially highlighting avenues for treatment of neuroinflammation associated CNS disorders, such as Alzheimer’s disease and Parkinson’s disease. There remains a need to characterise the response of microglia to radiation, particularly low dose ionising radiation. © The Authors - Open Access
- ItemEpigenetic silencing of the human 18 kDa translocator protein in a T cell leukemia cell line(Mary Ann Liebert, Inc. publishers, 2017-02-01) Middleton, RJ; Kam, WWY; Liu, GJ; Banati, RBThe mitochondrial membrane 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is constitutively expressed in most organs, most abundantly in hormonal tissue and cells of mononuclear phagocyte lineage, while in the brain, TSPO expression is induced in the wake of injury, inflammation, and neurodegeneration. Increased TSPO expression is also prominent in several cancerous tissues where it appears to correlate with the degree of malignancy. Currently, TSPO is thus actively investigated as a generic biomarker for disease activity and a therapeutic target for a wide range of diseases. In this study, we report a Jurkat human T cell leukemia cell line that has only trace expression of TSPO mRNA. Through the use of bisulphite genomic sequencing, we show that the Jurkat TSPO promoter is highly methylated except for CpG sites that are adjacent to the transcription start site. Control measurements in HEK-293, HeLa, and U87-MG cells with high TSPO mRNA expression showed low levels of TSPO promoter methylation. Demethylation with 5-aza-2'-deoxycytidine (5-aza-dC) caused a dose-dependent increase in TSPO mRNA with a corresponding demethylation of the TSPO promoter in Jurkat cells. Treating HeLa and U87-MG cells with 5-aza-dC caused no change in the level of TSPO mRNA. These observations confirm the epigenetic regulation of TSPO and suggest it to be a more common mechanism by which the differential expression of TSPO in various cell types and in health and disease may be explained. ©2017 Mary Ann Liebert, Inc.
- ItemFunctional gains in energy and cell metabolism after TSPO gene insertion(Taylor & Francis, 2017-02-02) Liu, GJ; Middleton, RJ; Kam, WWY; Chin, DY; Hatty, CR; Chan, RHY; Banati, RBRecent loss-of-function studies in tissue-specific as well as global Tspo (Translocator Protein 18 kDa) knockout mice have not confirmed its long assumed indispensability for the translocation of cholesterol across the mitochondrial inter-membrane space, a rate-limiting step in steroid biosynthesis. Instead, recent studies in global Tspo knockout mice indicate that TSPO may play a more fundamental role in cellular bioenergetics, which may include the indirect down-stream regulation of transport or metabolic functions. To examine whether overexpression of the TSPO protein alters the cellular bioenergetic profile, Jurkat cells with low to absent endogenous expression were transfected with a TSPO construct to create a stable cell line with de novo expression of exogenous TSPO protein. Expression of TSPO was confirmed by RT-qPCR, radioligand binding with [3H]PK11195 and immunocytochemistry with a TSPO antibody. We demonstrate that TSPO gene insertion causes increased transcription of genes involved in the mitochondrial electron transport chain. Furthermore, TSPO insertion increased mitochondrial ATP production as well as cell excitability, reflected in a decrease in patch clamp recorded rectified K channel currents. These functional changes were accompanied by an increase in cell proliferation and motility, which were inhibited by PK11195, a selective ligand for TSPO. We suggest that TSPO may serve a range of functions that can be viewed as downstream regulatory effects of its primary, evolutionary conserved role in cell metabolism and energy production. © 2017 ANSTO
- ItemGlutamate potentiates lipopolysaccharide–stimulated interleukin-10 release from neonatal rat spinal cord astrocytes(Elsevier, 2012-04-05) Werry, EL; Liu, GJ; Lovelace, MD; Nagarajah, R; Bennett, MRInterleukin-10 (IL-10) has important anti-inflammatory effects and can be protective in inflammatory conditions, such as chronic pain and infection. Exploring factors that modulate IL-10 levels may provide insight into pathomechanisms of inflammatory conditions and may provide a method of neuroprotection during these conditions. Lipopolysaccharide (LPS) stimulation of astrocytes is a source of IL-10; hence, it is of interest to investigate factors that modulate this process. Glutamate is present in increased concentrations in inflammatory conditions, and astrocytes also express glutamate receptors. The present study, therefore, investigated whether glutamate modulates LPS stimulation of IL-10 release from neonatal spinal cord astrocytes. Enzyme-linked immunosorbent assays (ELISAs) were used to quantify IL-10 release from cultured neonatal spinal cord astrocytes, and reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure IL-10 mRNA expression. Glutamate (1 mM) significantly increased LPS (1 μg/ml)-stimulated IL-10 release from astrocytes by 166% and significantly upregulated IL-10 mRNA levels. Glutamate synergistically signaled through metabotropic glutamate receptor subgroups and the phospholipase C signaling pathway. Spinal cord astrocytes may, therefore, play a larger anti-inflammatory role than first thought in situations where glutamate and a high concentration of Toll-like receptor 4 (TLR4) agonists are present. © 2012 IBRO. Published by Elsevier Ltd.
- ItemGuwiyang Wurra–‘Fire Mouse’: a global gene knockout model for TSPO/PBR drug development, loss-of-function and mechanisms of compensation studies(Portland Press Limited, 2015-08-03) Middleton, RJ; Liu, GJ; Banati, RBThe highly conserved 18-kDa translocator protein (TSPO) or peripheral benzodiazepine receptor (PBR), is being investigated as a diagnostic and therapeutic target for disease conditions ranging from inflammation to neurodegeneration and behavioural illnesses. Many functions have been attributed to TSPO/PBR including a role in the mitochondrial permeability transition pore (MPTP), steroidogenesis and energy metabolism. In this review, we detail the recent developments in determining the physiological role of TSPO/PBR, specifically based on data obtained from the recently generated Tspo knockout mouse models. In addition to defining the role of TSPO/PBR, we also describe the value of Tspo knockout mice in determining the selectivity, specificity and presence of any off-target effects of TSPO/PBR ligands. © 2015 Authors
- ItemIFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing(Royal Society of Chemistry, 2019-04-29) Zhang, FY; Deng, F; Liu, GJ; Middleton, RJ; Inglis, DW; Anwer, A; Wang, S; Liu, GZInterferon-gamma (IFN-γ), a proinflammatory cytokine, has been used as an early indicator of multiple infectious diseases or tumors. In order to explore the detection capability of a commonly used anti-IFN-γ aptamer, a simple target induced strand-displacement aptasensing strategy was tested by introducing three different complementary strands and two different signal/quencher pairs. The Texas red/BHQ2-based sensor showed the best affinity constant (Kd) of 21.87 ng mL−1. It was found that the strand-displacement aptasensing strategy was impacted by the complementary position and length of the complementary strands. Additionally, the hybridization chain reaction (HCR) amplification strategy was introduced, yielding a 12-fold improved sensitivity of 0.45 ng mL−1. In order to further explore the sensing platform for spatially localized cytokine detection, the Texas red/BHQ2-based strand-displacement aptasensor was successfully fabricated on the 3D optical fiber surface to achieve a deployable sensing device for monitoring IFN-γ based on the fluorescence spots counting strategy. Finally, the three developed aptasensing strategies (strand-displacement strategy, HCR amplification strategy, 3D optical fiber aptasensor) were applied for detection of IFN-γ secreted by PBMCs with comparable results to those of ELISA. The deployable 3D optical fiber aptasensor with the superior sensitivity is potential to be used for detection of spatially localized IFN-γ in vivo. © 2019 The Royal Society of Chemistry
- ItemThe impact of high and low dose ionising radiation on the central nervous system(Elsevier B.V., 2016-10-09) Betlazar, C; Middleton, RJ; Banati, RB; Liu, GJResponses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects. © 2016 The Authors Published by Elsevier B.V.
- ItemIntrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization(BioMed Central Ltd, 2014-12-04) Buljan, VA; Holsinger, RMD; Hambly, BD; Kanellis, VG; Matar, E; Larkin, X; Liu, GJ; Bohorquez-Florez, JJ; Banati, RBBackground In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 Authors
- ItemInvestigating the interactions of the 18 kDa translocator protein and its ligand PK11195 in planar lipid bilayers(Elsevier, 2014-03) Hatty, CR; Le Brun, AP; Lake, V; Clifton, LA; Liu, GJ; James, M; Banati, RBThe functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18 kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~ 10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51 Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug–membrane interactions may contribute to the apparent affinity of TSPO ligands. © 2013, Elsevier B.V.
- ItemKnockout of TSPO delays and reduces amyloid, Tau, astrocytosis and behavioral dysfunctions in Alzheimer’s disease(Cold Spring Harbor Laboratory, 2022-03-28) Ceyzériat, K; Meyer, L; Boutjelda, F; Tsartsalis, S; Amossé, Q; Middleton, RJ; Liu, GJ; Banati, RB; Zilli, T; Garibotto, V; Millet, P; Tournier, BBThe 18kDa translocator protein (TSPO) is up-regulated in glial cells in neurodegenerative diseases. In Alzheimer’s disease (AD) animal models, TSPO is first overexpressed in astrocytes and then in microglia. However, the precise role of TSPO in the onset and progression of pathology and symptoms characteristic of the disease remains unknown. Here, we report that in the absence of TSPO in 3xTgAD mice the expected disease onset is significantly delayed and a reduction is seen in the hippocampal load of poorly and highly aggregated forms of Tau (−44% and −82%, respectively) and Aβ42 (−25% and −95%, respectively), at 9 months of age. In addition, the astrocyte reactivity was decreased in 3xTgAD.TSPO−/− mice with a reduction in the morphologic complexity and the size of astrocytes in the dorso-dorsal hippocampus and the hilus. Functionally, the absence of TSPO ameliorated the cognitive consequences of adeno-associated virus-induced Tau over-expression in the hippocampus. This suggests that TSPO plays an important role in the active disease progression of AD. TSPO-inhibiting drugs thus merit further exploration as to their potential to reduce the rate of neurodegenerative disease progression. © 2022 The Authors
- ItemLipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate(Elsevier, 2011-02-17) Werry, EL; Liu, GJ; Lovelace, MD; Nagarajah, R; Hickie, IB; Bennett, MRInterleukin-10 (IL-10) is a cytokine with important endogenous and therapeutic anti-inflammatory effects. Given this, it is of interest to investigate factors that modulate IL-10 levels in the central nervous system. IL-10 is released after lipopolysaccharide (LPS) stimulation of microglia. Microglia also express functional glutamate receptors and in inflammatory conditions are exposed to increased levels of glutamate. The aim of this research, then, is to investigate whether glutamate can modulate lipopolysaccharide stimulation of IL-10 release from neonatal rat spinal cord microglia. Enzyme-linked immunosorbent assays (ELISAs) were used to quantify IL-10 release from cultured neonatal spinal cord microglia and reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure IL-10 mRNA expression. Glutamate (1 mM) significantly increased LPS (1 μg/ml)-stimulated IL-10 release from microglia by 172% (EC50 of 103 μM) and significantly upregulated IL-10 mRNA levels. Glutamate potentiated LPS-stimulated IL-10 release by binding all subtypes of glutamate receptor. These results show that glutamate substantially increases the release of an anti-inflammatory cytokine from neonatal spinal cord microglia activated by a high concentration of LPS. © 2011, Elsevier Ltd.
- ItemLong-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO)(Springer Nature, 2022-02-28) Shi, Y; Cui, M; Ochs, K; Brendel, M; Strübing, FL; Briel, N; Eckenweber, F; Zou, CY; Banati, RB; Liu, GJ; Middleton, RJ; Rupprecht, R; Rudolph, U; Zeilhofer, HU; Rammes, G; Herms, J; Dorostkar, MMBenzodiazepines are widely administered drugs to treat anxiety and insomnia. In addition to tolerance development and abuse liability, their chronic use may cause cognitive impairment and increase the risk for dementia. However, the mechanism by which benzodiazepines might contribute to persistent cognitive decline remains unknown. Here we report that diazepam, a widely prescribed benzodiazepine, impairs the structural plasticity of dendritic spines, causing cognitive impairment in mice. Diazepam induces these deficits via the mitochondrial 18 kDa translocator protein (TSPO), rather than classical γ-aminobutyric acid type A receptors, which alters microglial morphology, and phagocytosis of synaptic material. Collectively, our findings demonstrate a mechanism by which TSPO ligands alter synaptic plasticity and, as a consequence, cause cognitive impairment. © 2022, The Author(s), under exclusive licence to Springer Nature America, Inc.
- ItemMicrogravity × radiation: a space mechanobiology approach toward cardiovascular function and disease(Frontiers Media S.A., 2021-10-29) Basirun, C; Ferlazzo, ML; Howell, NR; Liu, GJ; Middleton, RJ; Martinac, B; Narayanan, SA; Poole, K; Gentile, C; Chou, JIn recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases. © 2021 Basirun, Ferlazzo, Howell, Liu, Middleton, Martinac, Narayanan, Poole, Gentile and Chou.
- ItemMitochondrial translocator protein (TSPO) expression in the brain after whole body gamma irradiation(Frontier Media S.A., 2021-10-25) Betlazar, C; Middleton, RJ; Howell, NR; Storer, B; Davis, E; Davies, JB; Banati, RB; Liu, GJThe brain’s early response to low dose ionizing radiation, as may be encountered during diagnostic procedures and space exploration, is not yet fully characterized. In the brain parenchyma, the mitochondrial translocator protein (TSPO) is constitutively expressed at low levels by endothelial cells, and can therefore be used to assess the integrity of the brain’s vasculature. At the same time, the inducible expression of TSPO in activated microglia, the brain’s intrinsic immune cells, is a regularly observed early indicator of subtle or incipient brain pathology. Here, we explored the use of TSPO as a biomarker of brain tissue injury following whole body irradiation. Post-radiation responses were measured in C57BL/6 wild type (Tspo+/+) and TSPO knockout (Tspo–/–) mice 48 h after single whole body gamma irradiations with low doses 0, 0.01, and 0.1 Gy and a high dose of 2 Gy. Additionally, post-radiation responses of primary microglial cell cultures were measured at 1, 4, 24, and 48 h at an irradiation dose range of 0 Gy-2 Gy. TSPO mRNA and protein expression in the brain showed a decreased trend after 0.01 Gy relative to sham-irradiated controls, but remained unchanged after higher doses. Immunohistochemistry confirmed subtle decreases in TSPO expression after 0.01 Gy in vascular endothelial cells of the hippocampal region and in ependymal cells, with no detectable changes following higher doses. Cytokine concentrations in plasma after whole body irradiation showed differential changes in IL-6 and IL-10 with some variations between Tspo–/– and Tspo+/+ animals. The in vitro measurements of TSPO in primary microglial cell cultures showed a significant reduction 1 h after low dose irradiation (0.01 Gy). In summary, acute low and high doses of gamma irradiation up to 2 Gy reduced TSPO expression in the brain’s vascular compartment without de novo induction of TSPO expression in parenchymal microglia, while TSPO expression in directly irradiated, isolated, and thus highly activated microglia, too, was reduced after low dose irradiation. The potential link between TSPO, its role in mitochondrial energy metabolism and the selective radiation sensitivity, notably of cells with constitutive TSPO expression such as vascular endothelial cells, merits further exploration. © The Authors - Open Access
- ItemPositron emission tomography and functional characterization of a complete PBR/TSPO knockout(Springer Nature, 2014-11-19) Banati, RB; Middleton, RJ; Chan, RHY; Hatty, CR; Wai-Ying Kam, W; Quin, C; Graeber, MB; Parmar, A; Zahra, D; Callaghan, PD; Fok, S; Howell, NR; Grégoire, MC; Szabo, A; Pham, TQ; Davis, E; Liu, GJThe evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer’s disease to anxiety. Here we show that global C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from GuwiyangWurraTSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of GuwiyangWurraTSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs. Copyright © 2014, Springer Nature
- ItemSelective, high-contrast detection of syngeneic glioblastoma in vivo(Springer Nature, 2020-06-19) Banati, RB; Wilcox, P; Xu, R; Yin, G; Si, E; Son, ET; Shimizu, M; Holsinger, RMD; Parmar, A; Zahra, D; Arthur, A; Middleton, RJ; Liu, GJ; Charil, A; Graeber, MBGlioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour’s ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo−/− mouse strain (C57BL/6-Tspotm1GuMu(GuwiyangWurra)). The high selectivity of [18 F]PBR111 for the TSPO combined with the exclusive expression of TSPO in glioma cells infiltrating into null-background host tissue free of any TSPO expression, makes it possible, for the first time, to unequivocally and with uniquely high biological contrast identify peri-tumoral glioma cell invasion at preclinical stages in vivo. Comparison of the in vivo imaging signal from wild-type glioma cells in a null background with the signal in a wild-type host tissue, where the tumour induces the expected TSPO expression in the host’s glial cells, illustrates the substantial extent of the peritumoral host response to the growing tumour. The syngeneic tumour (TSPO+/+) in null background (TSPO−/−) model is thus well suited to study the interaction of the tumour front with the peri-tumoral tissue, and the experimental evaluation of new therapeutic approaches targeting the invasive behaviour of glioblastoma. © 2020, The Author(s).
- ItemSpace radiation and individual radiosensitivity - ANSTO CAS & Human Health in air beam experiments(Australian Nuclear Science and Technology Organisation, 2021-11-26) Ferlazzo, ML; Howell, NR; Liu, GJ; Zahra, D; Middleton, RJ; Foray, NRadiation exposure is a major limiting factor for long duration manned space flights. Radiation protection standards are based on the assumption that individuals are equally resistant to ionizing radiation. However, for over a century, there is evidence that humans do not respond equally to radiation. Particularly, the studies of secondary effects post-radiotherapy have shown a great variability among individuals. More specifically, large discrepancies among astronauts after the same flight were observed. Recently, from a collection of hundreds of fibroblast cell lines derived from patients suffering from genetic disease or post-radiotherapy radiosensitivity, we have shown that the delay in the nucleoshuttling of the ATM protein may cause a lack of double strand break (DSB) recognition, incomplete DSB repair and radiosensitivity. Interestingly, the model of the ATM nucleoshuttling was shown to be relevant not only for low-dose and repeated exposures, but also for high-LET particles, which renders this model compatible with space radiation exposure scenarios. Lastly, this model could lead to a novel approach for radiation protection, consisting of interventions to accelerate ATM nucleoshuttling. Such an approach may help in developing efficient countermeasures that could assist with manned space flights. In 2019-2021, teams from ANSTO CAS and Human Health have been collaborating to adapt the ANTARES beamline for in air irradiation of living matter and study the effects of secondary radiation produced by interraction of cosmic and galactic rays with spacecraft shielding. DNA repair and mitochondrial activity processes will be studied. © 2021 The Authors