Browsing by Author "Liu, RS"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemCapacity enhancement of the quenched Li-Ni-Mn-Co oxide high-voltage Li-ion battery positive electrode(Elsevier, 2017-03-23) Jena, A; Lee, CH; Pang, WK; Peterson, VK; Sharma, N; Wang, CC; Song, YF; Lin, CC; Chang, H; Liu, RSLi-rich metal oxides, regarded as a high-voltage composite cathode, is currently one of the hottest positive electrode material for lithium-ion batteries, due to its high-capacity and high-energy performance. The crystallography, phase composition and morphology can be altered by synthesis parameters, which can influence drastically the capacity and cycling performance. In this work, we demonstrate Li1.207Ni0.127Mn0.54Co0.127O2, obtained by a co-precipitation method, exhibits super-high specific capacity up to 298 mAh g−1 and excellent capacity retention of ∼100% up to 50 cycles. Using neutron powder diffraction and transmission X-ray microscopy, we have found that the cooling-treatments applied after sintering during synthesis are crucially important in controlling the phase composition and morphology of the cathodes, thereby influencing the electrochemical performance. Unique spherical microstructure, larger lattice, and higher content of Li-rich monoclinic component can be achieved in the rapid quenching process, whereas severe particle cracking along with the smaller lattice and lower monoclinic component content is obtained when natural cooling of the furnace is applied. Combined with electrochemical impedance spectra, a plausible mechanism is described for the poorer specific capacity and cycling stability of the composite cathodes. © 2017 Elsevier Ltd.
- ItemChromium ion pair luminescence: a strategy in broadband near- infrared light-emitting diode design(American Chemical Society, 2021-11-04) Rajendran, V; Fang, MH; Huang, WT; Majewska, N; Lesniewski, T; Mahlik, S; Leniec, G; Kazmarek, SM; Pang, WK; Peterson, VK; Lu, KM; Chang, H; Liu, RSPortable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr3+ ion centers, and it is challenging to design broadband NIR phosphors based on Cr3+–Cr3+ pairs. Here, we explore the solid-solution series SrAl11.88–xGaxO19:0.12Cr3+ (x = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr3+–Cr3+ pairs and evaluate structure–property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr3+–Cr3+ ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr3+ and Cr3+–Cr3+ pairs, resulting in NIR luminescence at approximately 650–1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740–820 nm is related to the Cr3+–Cr3+ ion pair. We demonstrate the application of the SrAl5.88Ga6O19:0.12Cr3+ phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems. © 2021 American Chemical Society
- ItemDomination of second-sphere shrinkage effect to improve photoluminescence of red nitride phosphors(ACS Publications, 2014-11-14) Huang, WY; Yoshimura, F; Ueda, K; Pang, WK; Su, BJ; Jang, LJ; Chiang, CY; Zhou, WZ; Duy, NH; Liu, RSRed Ca0.99Al1–4δ/3–xSi1+δ+xN3–xCx:Eu2+0.01 (δ = 0.345; x = 0–0.2) nitride phosphors exhibit a blue-shifted emission with increased eye sensitivity function and excellent thermal stability. The variations in the photoluminescence in the Ca0.99Al1–4δ/3–xSi1+δ+xN3–xCx:Eu2+0.01 (δ = 0.345; x = 0–0.2) system are thoroughly investigated. The enhanced emission energy and the improved thermal stability with increasing x are dominated by the second-sphere shrinkage effect via the substitution of small Si4+ for large Al3+ with simultaneous charge compensation. Related proofs of the second-sphere shrinkage effect control for photoluminescence are confirmed via high-resolution neutron powder diffraction, EXAFS, and 29Si solid-state NMR techniques. © 2014, American Chemical Society.
- ItemEffects of oxygen deficiency on the magnetic ordering of Mn in Tb0.9Na0.1MnO2.9(Institute of Physics, 2008-03-12) Yang, CC; Wu, CM; Li, WH; Chan, TS; Liu, RS; Chen, YY; Avdeev, MMonovalent Na+ ions have been incorporated into a multiferroic TbMnO3 compound. Structural studies, using high-resolution neutron diffraction patterns, show that monovalent Na+-doping results in a noticeable oxygen deficiency in the compound. The alternations in crystalline and magnetic structures due to oxygen deficiency are investigated by neutron diffraction and magnetic susceptibility measurements. Na-doping turns the modulated incommensurate Mn spin structure, observed for the parent compound, into a simple commensurate one. The observed magnetic diffraction patterns agree very well with that calculated assuming a D-type arrangement for the Mn spins, with the moments pointing along the c-axis direction. No significant alternation in the ordering temperature of the Mn moments is found. © 2008, Institute of Physics
- ItemHydrogen-containing Na3HTi1–xMnxF8 narrow-band phosphor for light-emitting diodes(American Chemical Society, 2019-01-16) Fang, MH; Yang, TH; Lesniewski, T; Lee, C; Mahlik, S; Grinberg, M; Peterson, VK; Didier, C; Pang, WK; Su, CC; Liu, RSWe synthesize the phosphor Na3HTi1–xMnxF8 (Na3HTiF8:Mn4+) material series using a coprecipitation method. We determine the complete phase and crystallographic structure of the Na3HTiF8 series end-member, including the determination of the H atoms at the 4b (0, 1/2, 0) crystallographic site within the Cmcm space group symmetry structure, resulting in a quantum efficiency of ∼44%, which is comparative to the Na2SiF6:Mn4+ phosphor materials. We successfully model the luminescent properties of the Na3HTi1–xMnxF8 material series, including temperature and time-dependent photoluminescence, providing a good prediction of the decay properties at low and high temperature and revealing the existence of Mn5+ during the ionization process. Notably, LED package data indicates that the Na3HTi1–xMnxF8 material series could be a promising candidate for high-level and back-lighting devices. This research reveals the role that hydrogen plays in determining fluoride phosphor structure and properties, revealing a new path for the synthesis of fluoride phosphors. Copyright © 2019 American Chemical Society
- ItemMonitoring the phase evolution in LiCoO2 electrodes during battery cycles using in-situ neutron diffraction technique(John Wiley & Sons, Inc, 2019-12-03) Jena, A; Lee, PH; Pang, WK; Hsiao, KC; Peterson, VK; Darwish, TA; Yepuri, NR; Wu, SH; Chang, H; Liu, RSLiCoO2 (LCO) with average particle distribution of 8 μm (LCO-A) and 11 μm (LCO-B) exhibit substantial differences in cycle performance. The half-cells have similar first-cycle discharge capacities of 173 and 175 mAh/g at 0.25 C, but after 100 cycles, the discharge capacities are substantially different, that is, 114 and 141 mAh/g for LCO-A and LCO-B, respectively. Operando neutron powder diffraction of full LCO||Li4Ti5O12 batteries show differences in the LCO reaction mechanism underpinning the electrochemical behavior. LCO-A follows a purely solid solution reaction during cycling compared to the solid solution and two-phase reaction mechanism in LCO-B. The absence of the two-phase reaction in LCO-A is consistent with a homogeneous distribution of Li throughout the particle. The two-phase reaction in LCO-B reflects two distinguishable distributions of Li within the particles. The faster capacity decay in LCO-A is correlated to an increase in electrode cracking during battery cycles. © 2019 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co.