Browsing by Author "Liu, F"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemBand alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4(Thermo Scientific, 2014-04-01) Yan, C; Liu, F; Song, N; Ng, B; Stride, JA; Tadich, A; Hao, XThe heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In2S3 on p-type Cu2ZnSnS4 (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBOXPS¼ 0.2460.10 eV and CBONEXAFS¼ 0.1860.10 eV, whereas those of Zn(O,S) and In2S3 were found to be spike-like with CBOXPS¼0.9260.10 eV and CBONEXAFS¼0.8760.10 eV for Zn(O,S)/CZTS and CBOXPS¼0.4160.10 eV for In2S3/CZTS, respectively. The CZTS photovoltaic device using the spike-like In2S3 buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In2S3/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed. © 2014, AIP Publishing LLC.
- ItemControlling spin orientation and metamagnetic transitions in anisotropic van der Waals antiferromagnet CrPS4 by hydrostatic pressure(Wiley, 2022-02) Peng, Y; Lin, Z; Tian, G; Yang, J; Zhang, P; Wang, F; Gu, P; Liu, X; Wang, CW; Avdeev, M; Liu, F; Zhou, D; Han, R; Shen, P; Yang, W; Liu, S; Ye, Y; Yang, JControlling the phases of matter is a central task in condensed matter physics and materials science. In 2D magnets, manipulating spin orientation is of great significance in the context of the Mermin–Wagner theorem. Herein, a systematic study of temperature‐ and pressure‐dependent magnetic properties up to 1 GPa in van der Waals CrPS4 is reported. Owing to the temperature‐dependent change of the magnetic anisotropy energy, the material undergoes a first‐order spin reorientation transition with magnetic moments realigning from being almost parallel with the c axis in the ac plane to the quasi‐1D chains of CrS6 octahedra along the b axis upon heating. The spin reorientation temperature is suppressed after applying pressure, shifting the high‐temperature phase to lower temperatures with the emergence of spin‐flop transitions under magnetic fields applied along the b axis. The saturation field increases with pressure, indicating the enhancement of interlayer antiferromagnetic coupling. However, the Néel temperature is slightly reduced, which is ascribed to the suppression of intralayer ferromagnetic coupling. The work demonstrates the control of spin orientation and metamagnetic transitions in layered antiferromagnets, which may provide new perspectives for exploring 2D magnetism and related spintronic devices. © 2021 Wiley-VCH GmbH.
- ItemFe Site order and magnetic properties of Fe1/4NbS2(American Chemical Society (ACS), 2023-11-06) Lawrence, EA; Huai, XD; Kim, DW; Avdeev, M; Chen, Y; Skorupskii, G; Miura, A; Ferrenti, A; Waibel, M; Kawaguchi, S; Ng, N; Kaman, B; Cai, Z; Schoop, L; Kushwaha, S; Liu, F; Tran, TT; Ji, HTransition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history. © 2023 American Chemical Society.