Browsing by Author "Lin, HJ"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemBulk and surface properties regulation of single/double perovskites to realize enhanced oxygen evolution reactivity(John Wiley & Sons, Inc, 2020-04-06) Sun, HS; Hu, B; Guan, DQ; Hu, ZW; Fei, LS; Li, MR; Peterson, VK; Lin, HJ; Chen, CT; Ran, R; Zhou, W; Shao, ZPPerovskite-based oxides have emerged as promising oxygen evolution reaction (OER) electrocatalysts. The performance is closely related to the lattice, electronic, and defect structure of the oxides, which determine surface and bulk properties and consequent catalytic activity and durability. Further, interfacial interactions between phases in a nanocomposite may affect bulk transportation and surface adsorption properties in a similar manner to phase doping except without solubility limits. Herein, we report the development of a single/double perovskite nanohybrid with limited surface self-reconstruction capability as an OER electrocatalyst. Such superior performance arises from a structure that maintains high crystallinity post OER catalysis, in addition to forming an amorphous layer following the self-reconstruction of a single perovskite structure during the OER process. In situ X-ray absorption near edge structure spectroscopy and high-resolution synchrotron-based X-ray diffraction reveal an amorphization process in the hybrid single/double perovskite oxide system that is limited in comparison to single perovskite amorphization, ensuring high catalytic activity. © 2020 Wiley-VCH Verlag GmbH & Co
- ItemDetermination of hole distribution in Sr14-xCaxCu24O41 using soft x-ray absorption spectroscopy at the Cu L3 edge.(American Physical Society, 2013-07-22) Huang, MJ; Deng, G; Chin, YY; Hu, ZW; Cheng, JG; Chou, FC; Conder, K; Zhou, JS; Pi, TW; Goodenough, JB; Lin, HJ; Chen, CTThe physical properties of Sr14-xCaxCu24O41 are determined by the hole distribution between the edge-shared CuO2 chain and the corner-shared Cu2O3 two-leg ladder, but inconsistent results on the hole distribution were obtained in various experimental works in recent decades. In this work we reinvestigate the hole distribution by soft x-ray absorption spectroscopy at the Cu L-3 edge. By comparing with the pure ladder and the pure chain systems, we can unambiguously distinguish between the hole distributions in the chain and the ladder. We have found that there are 5.3 holes in the edge-shared chain and 0.7 holes in the corner-shared ladder on average for Sr14Cu24O41. Upon Ca substitution, the holes gradually transfer from the edge-shared chain to the corner-shared ladder, and there are up to 1.21 holes in the corner-shared ladder for Sr1.8Ca12.2Cu24O41. © 2013, American Physical Society.
- ItemDirect evidence of Ni magnetic moment in TbNi2Mn—X-ray magnetic circular dichroism(Elsevier, 2014-12-01) Yu, DH; Huang, MJ; Su, HC; Lin, HJ; Chen, CT; Campbell, SJ; Wang, JLWe have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi2Mn in the Laves phase (magnetic phase transition temperature TC ~131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μB and 0.05±0.01 μB, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μB has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ~0.3 μB has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi2Mn compared with TbNi2 (TC~37.5 K) and TbMn2 (TC~54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi2Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature TC ~131 K – is discussed. © 2014 Elsevier
- ItemIn operando‐formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide(Wiley, 2023-04) Wu, XH; Guo, Y; Gu, Y; Xie, F; Li, M; Hu, Z; Lin, HJ; Pao, CW; Huang, YC; Dong, CL; Peterson, VK; Ran, R; Zhou, W; Shao, ZPElectrochemical carbon dioxide (CO2) reduction (ECR) is a promising technology to produce valuable fuels and feedstocks from CO2. Despite large efforts to develop ECR catalysts, the investigation of the catalytic performance and electrochemical behavior of complex metal oxides, especially perovskite oxides, is rarely reported. Here, the inorganic perovskite oxide Ag‐doped (La0.8Sr0.2)0.95Ag0.05MnO3–δ (LSA0.05M) is reported as an efficient electrocatalyst for ECR to CO for the first time, which exhibits a Faradaic efficiency (FE) of 84.3%, a remarkable mass activity of 75 A g−1 (normalized to the mass of Ag), and stability of 130 h at a moderate overpotential of 0.79 V. The LSA0.05M catalyst experiences structure reconstruction during ECR, creating the in operando‐formed interface between the perovskite and the evolved Ag phase. The evolved Ag is uniformly distributed with a small particle size on the perovskite surface. Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite–Ag interface provides adsorption sites for CO2 and accelerates the desorption of the *CO intermediate to enhance ECR. This study presents a novel high‐performance perovskite catalyst for ECR and may inspire the future design of electrocatalysts via the in operando formation of metal–metal oxide interfaces. © 2022 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons - Open Access CC BY 4.0
- ItemInvestigation of field-induced ferromagnetism in Pd-Ni-Fe-P metallic glass by x-ray magnetic circular dichroism(American Institute of Physics, 2009-01-12) Yu, DH; Duriavig, J; Loh, NA; Woodward, RC; Lin, HJ; Chang, FH; Kilcoyne, SH; Stampfl, APJ; Robinson, RAWe have applied x-ray magnetic circular dichroism to investigate the field-induced ferromagnetism in Pd40Ni22.5Fe17.5P20 alloy. The experiment revealed that both Ni and Fe were in a divalent state and that the magnetic properties of the material were determined by the localized 3d electrons of the transition metals. No clear evidence of Ruderman–Kittel–Kasuya–Yosida-type interaction among magnetic clusters was observed. It is believed that the detailed balance of fundamental spin-orbit and exchange interactions as a function of temperature and applied magnetic field determine the different magnetic properties of the alloy. © 2009, American Institute of Physics
- ItemUnlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution(Elsevier, 2021-11) Hou, J; Hadouchi, M; Sui, L; Liu, J; Tang, M; Kan, WH; Avdeev, M; Zhong, G; Liao, YK; Lai, YH; Chu, YH; Lin, HJ; Chen, CT; Hu, ZW; Huang, YH; Ma, JThe exploitation of high energy and high power densities cathode materials for sodium ion batteries is a challenge. Na-super-ionic-conductor (NASICON) Na4MnV(PO4)3 is one of promising high-performance and low-cost cathode materials, however, still suffers from not reaching the theoretical capacity, low rate capability, and poor cycling stability. In this work, we deploy a novel sodium-deficient NASICON fluorinated phosphate cathode material for sodium ion batteries which demonstrates, notably, high energy and high power densities concomitant with high sodium diffusion kinetics. The enhanced performance of this novel Na3.85⬜0.15MnV(PO3.95F0.05)3 cathode was evidenced by demonstrating a relatively high energy density of ∼380 Wh kg−1 at low rate with much improved rate capability compared to non-doped Na4MnV(PO4)3, and long cycling life over 2000 cycles at high current rates. The structural investigation during battery operation using in situ x-ray diffraction (XRD) reveals bi-phase mechanism with high structural reversibility. The combined XRD and 23Na nuclear magnetic resonance (NMR) analyses demonstrate that the sodium extraction/insertion from Na2 is faster than Na1 site. These findings open promising prospects for unlocking of high energy and high power densities of NASICON phosphate materials by fluorine substitution towards high-performance sodium ion batteries. © 2021 Elsevier B.V.