Browsing by Author "Li, RH"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemLocal electronic and magnetic properties of the doped topological insulators Bi2Se3:Ca and Bi2Te3 : Mn investigated using ion-implanted 8Li β-NMR(American Physical Society (APS), 2020-12-28) McFadden, RML; Chatzichristos, A; Cortie, DL; Fujimoto, D; San Hor, Y; Ji, H; Karner, VL; Kiefl, RF; Levy, CDP; Li, RH; McKenzie, I; Morris, GD; Pearson, MR; Stachura, M; Cava, RJ; MacFarlane, WAWe report β-NMR measurements in Bi2Se3:Ca and Bi2Te3:Mn single crystals using Li+8 implanted to depths on the order of 100 nm. Above ∼200K, spin-lattice relaxation reveals diffusion of Li+8, with activation energies of ∼0.4eV (∼0.2eV) in Bi2Se3:Ca (Bi2Te3:Mn). At lower temperatures, the NMR properties are those of a heavily doped semiconductor in the metallic limit, with Korringa relaxation and a small, negative, temperature-dependent Knight shift in Bi2Se3:Ca. From this, we make a detailed comparison with the isostructural tetradymite Bi2Te2Se [McFadden, Phys. Rev. B 99, 125201 (2019)2469-995010.1103/PhysRevB.99.125201]. In the magnetic Bi2Te3:Mn, the effects of the dilute Mn moments predominate, but remarkably the Li+8 signal is not wiped out through the magnetic transition at 13 K, with a prominent critical peak in the spin-lattice relaxation that is suppressed in a high applied field. This detailed characterization of the Li+8 NMR response is an important step toward using depth-resolved β-NMR to study the low-energy properties of the chiral topological surface state in the Bi2Ch3 tetradymite topological insulator. ©2024 American Physical Society.