Browsing by Author "Leuning, R"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFormation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest(Copernicus Publications, 2008-01-14) Suni, T; Kulmala, M; Hirsikko, A; Bergman, T; Laakso, L; Aalto, PP; Leuning, R; Cleugh, H; Zegelin, S; Hughes, D; van Gorsel, E; Kitchen, M; Vana, M; Hõrrak, U; Mirme, S; Mirme, A; Sevanto, S; Twining, JR; Tadros, CVAbstract. Biogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2–3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5–3 nm particles during these formation events were 2.89/2.68 nmh−1, respectively; for 3-7 nm particles 4.26/4.03, and for 7–20 nm particles 8.90/7.58 nmh−1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34–1.8 nm) were 2400/1700 cm−3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba. © Author(s) 2008. This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 Licence.
- ItemRadon tracer flux measurements of CO2, N2O and CH4 at Wagga Wagga: OASIS revisited?(Australian Government Bureau of Meteorology, 2017-11-12) Griffith, DWT; Wilson, SR; Griffiths, AD; Chambers, SD; Williams, AG; Werczynski, S; Sisoutham, O; Howitt, JA; Reardon, D; Leuning, RVertical profiles and suitably-conditioned surface time histories of the natural radioactive noble gas radon-222 (radon) have long been demonstrated to be useful as quantitative indicators of diurnal- to synoptic-scale mixing processes within the continental lower troposphere. Radon’s well-characterised and slowly-varying source function over (ice-free)terrestrial surfaces, together with its short half-life of 3.8 days, makes it a particularly suitable passive scalar for the evaluation of boundary layer and convective mixing parameterisation schemes in a range of regional and global climate and pollution transport models. We provide a brief overview of ANSTO measurement programs using radon to characterise vertical mixing in the lower atmosphere, together with examples of their applications in modelling and pollution studies. We then present preliminary results from recent field campaigns collecting high resolution vertical radon profiles in the terrestrial boundary layer over rural New South Wales, using a radon sampler mounted on an instrumented motor-glider. The flights were conducted in the lowest 1000m of the atmosphere and, together with simultaneous ground-based and tower measurements, document the dispersion of radon emissions accumulated below the nocturnal stable inversion into the developing daytime convective boundary layer during the important morning transition period.
- ItemTesting atmospheric monitoring techniques for geological storage of CO2(Centre for Australian Weather and Climate Research, 2011-11-15) Etheridge, DM; Loh, ZM; Luhar, A; Leuning, R; Steele, LP; Allison, CE; Smith, AM; Hibberd, MF; Feitz, A; Berko, HThe success of CO2 geological storage in mitigating climate change will depend on its ability to withhold large amounts of CO2 from the atmosphere over centuries or more. Atmospheric techniques have been used to monitor Australia’s first geosequestration project, the CO2CRC Otway Project, since its inception (Etheridge et al. 2011; Jenkins et al. 2011). These techniques have been developed to be sensitive (detecting small potential leakage signals against large and variable background CO2 concentrations and fluxes), specific (attributing variations to sources using chemical and isotopic fingerprints and dispersion modelling) and practical (continuous remote operation) (Leuning et al. 2008; Luhar et al. 2009). A recent stage of the Otway project involved periods of controlled releases of injected gas at the surface that could mimic leakage. This provided a test of the original atmospheric scheme, complemented by additional measurements of CO2 and CH4 concentrations and carbon isotopes of CO2. Based on the experience at Otway and recent results from the new Arcturus baseline atmospheric station in Queensland, this presentation will consider the potential merits of atmospheric techniques for monitoring greenhouse gas emissions from emerging energy technologies such as geosequestration and coal seam methane. © 2011 CSIRO and the Bureau of Meteorology.