Browsing by Author "Lee, KH"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemControlling hierarchy in solution-processed polymer solar cells based on crosslinked P3HT(Wiley-VCH Verlag GmbH & Co. KGaA, 2013-01-01) Tao, C; Aljada, M; Shaw, PE; Lee, KH; Cavaye, H; Balfour, MN; Borthwick, RJ; James, M; Burn, PL; Gentle, IR; Meredith, PUnderstanding and controlling the morphology of donor/acceptor blends is critical for the development of solution processable organic solar cells. By crosslinking a poly(3-n-hexylthiophene-2,5-diyl) (P3HT) film we have been able to spin-coat [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) onto the film to form a structure that is close to a bilayer, thus creating an ideal platform for investigating interdiffusion in this model system. Neutron reflectometry (NR) demonstrates that without any thermal treatment a smaller amount of PCBM percolates throughout the crosslinked P3HT when compared to a non-crosslinked P3HT film. Using time-resolved NR we also show thermal annealing increases the rate of diffusion, resulting in a near-uniform distribution of PCBM throughout the polymer film. XPS measurements confirm the presence of both P3HT and PCBM at the annealed film's surface indicating that the two components are intermixed. Photovoltaic devices fabricated using this bilayer approach and suitable annealing conditions yielded comparable power conversion efficiencies to bulk heterojunction devices made from the same materials. The crosslinking procedure has also enabled the formation of patterned P3HT films by photolithography. Pillars with feature sizes down to 2 μm were produced and after subsequent deposition of PCBM and thermal annealing devices with efficiencies of up to 1.4% were produced.© 2013, Wiley-VCH Verlag GmbH & Co. KGaA
- ItemCorrelation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry(Royal Society of Chemistry, 2013-01-01) Lee, KH; Zhang, YL; Burn, PL; Gentle, IR; James, M; Nelson, A; Meredith, PControl over the structure of donor/acceptor blends is essential for the development of solution processable organic solar cells (OSCs). We have used time-resolved neutron reflectometry (NR) and in situ annealing to investigate the nanoscale structure and interdiffusion of sequentially spin-coated thin films of poly(3-n-hexylthiophene-2,5-diyl) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and correlated the evolving structure with the device performance. While the as-prepared film shows a clear two-layer structure it is evident that (19 wt%) PCBM has percolated throughout the lower P3HT layer. Upon heating, analysis of time-resolved NR data shows that the diffusion process is dependent on the annealing temperature. At temperatures up to 110 [degree]C, the two-layer structure is retained and only a small amount of PCBM diffuses from the interface into the lower layer, increasing the total PCBM content throughout the P3HT layer to 26 wt%. Significantly, this small change in acceptor content leads to a profound increase in device performance; with the power conversion efficiency (PCE) of the OSCs increasing from 0.47% (unannealed, 19 wt% PCBM) to 3.23% (annealed, 26 wt% PCBM) with the latter showing a similar efficiency to devices prepared from a blend containing 50 wt% PCBM. Further annealing at 120 and 130 [degree]C sees rapid interdiffusion between the two layers, along with an overall expansion in the thickness of the bilayer film. Despite the complete intermixing of the PCBM and P3HT to form a structure resembling a bulk heterojunction, essentially no improvement in device performance was observed for annealing at temperatures above 110 [degree]C. © 2013, Royal Society of Chemistry
- ItemDetermination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices(American Chemical Society, 2014-01-27) Clulow, AJ; Armin, A; Lee, KH; Pandey, AK; Tao, C; Velusamy, M; James, M; Nelson, A; Burn, PL; Gentle, IR; Meredith, PFullerene derivatives are commonly used as electron acceptors in combination with (macro)molecular electron donors in bulk heterojunction (BHJ) organic photovoltaic (OPV) devices. Understanding the BHJ structure at different electron donor/acceptor ratios is critical to the continued improvement and development of OPVs. The high neutron scattering length densities (SLDs) of the fullerenes provide effective contrast for probing the distribution of the fullerene within the blend in a nondestructive way. However, recent neutron scattering studies on BHJ films have reported a wide range of SLDs ((3.6–4.4) × 10–6 Å–2) for the fullerenes 60-PCBM and 70-PCBM, leading to differing interpretations of their distribution in thin films. In this article, we describe an approach for determining more precisely the scattering length densities of the fullerenes within a polymer matrix in order to accurately quantify their distribution within the active layers of OPV devices by neutron scattering techniques.© 2014, American Chemical Society.
- ItemIntraphase microstructure–understanding the impact on organic solar cell performance(Wiley-V C H Verlag GMBH, 2013-12-05) Scholes, FH; Ehlig, T; James, M; Lee, KH; Duffy, N; Scully, AD; Singh, TB; Winzenberg, KN; Kemppinen, P; Watkins, SEA comprehensive study of the effect of intraphase microstructure on organic photovoltaic (OPV) device performance is undertaken. Utilizing a bilayer device architecture, a small molecule donor (TIPS-DBC) is deposited by both spin-coating and by thermal evaporation in vacuum. The devices are then completed by thermal evaporation of C60, an exciton blocking layer and the cathode. This bilayer approach enables a direct comparison of device performance for donor layers in which the same material exhibits subtle differences in microstructure. The electrical performance is shown to differ considerably for the two devices. The bulk and interfacial properties of the donor layers are compared by examination with photoelectron spectroscopy in air (PESA), optical absorption spectroscopy, charge extraction of photo-generated charge carriers by linearly increasing voltage (photo-CELIV), time-resolved photoluminescence measurements, X-ray reflectometry (XR), and analysis of dark current behavior. The observed differences in device performance are shown to be influenced by changes to energy levels and charge transport properties resulting from differences in the microstructure of the donor layers. Importantly, this work demonstrates that in addition to the donor/acceptor microstructure, the intraphase microstructure can influence critical parameters and can therefore have a significant impact on OPV performance. © 2013, Wiley-VCH Verlag GmbH & Co. KGaA
- ItemMorphology of all-solution-processed “bilayer” organic solar cells(Wiley-VCH Verlag Berlin, 2011-02-08) Lee, KH; Schwenn, PE; Smith, ARG; Cavaye, H; Shaw, PE; James, M; Krueger, KB; Gentle, IR; Meredith, P; Burn, PLWe investigate the evolution of the vertical morphology in a solution-processed P3HT/PCBM “bilayer” organic solar cell using a combination of techniques, including neutron reflectometry. By correlating the device performance with the active layer morphology, we establish that the solution processed bilayer concept is a misnomer and sequential solution processing is an elegant way to make bulk heterojunction organic solar cells with high efficiency. © 2011, Wiley-VCH Verlag Berlin
- ItemTime-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerenel layers(ACS Publications, 2014-09) Clulow, AJ; Tao, C; Lee, KH; Velusamy, M; McEwan, JA; Shaw, PE; Yamada, NL; James, M; Burn, PL; Gentle, IR; Meredith, PWe have used steady-state and time-resolved neutron reflectometry to study the diffusion of fullerene derivatives into the narrow optical gap polymer poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) to explore the sequential processing of the donor and acceptor for the preparation of efficient organic solar cells. It was found that when [6,6]-phenyl-C61-butyric-acid-methyl-ester (60-PCBM) was deposited onto a thin film of PCDTBT from dichloromethane (DCM), a three-layer structure was formed that was stable below the glass-transition temperature of the polymer. When good solvents for the polymer were used in conjunction with DCM, both 60-PCBM and [6,6]-phenyl-C71-butyric-acid-methyl-ester (70-PCBM) were seen to form films that had a thick fullerene layer containing little polymer and a PCDTBT-rich layer near the interface with the substrate. Devices composed of films prepared by sequential deposition of the polymer and fullerene had efficiencies of up to 5.3%, with those based on 60-PCBM close to optimized bulk heterojunction (BHJ) cells processed in the conventional manner. Sequential deposition of pure components to form the active layer is attractive for large-area device fabrication, and the results demonstrate that this processing method can give efficient solar cells. © 2014, American Chemical Society.