Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lee, JJ"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evaluation of polymorphism and charge transport in a BaO–CaO–Ta2O5 perovskite phase diagram using TOF-neutron and synchrotron X-ray diffraction, the bond-valence method and impedance spectroscopy
    (Royal Society of Chemistry (RSC), 2022-10-26) Singh, K; Yang, H; Zhang, Z; Avdeev, M; Huq, Ashfia; Wu, DY; Lee, JJ; Kan, WH; Thangadurai, V
    Among the alkaline earth-based perovskite oxides, the Ba-based perovskites have superior chemical stability and tunable electrical/catalytic property via chemical substitution/doping. One of the best-known examples is Ba3Ca1.18Nb1.82O8.73 as a ceramic proton conductor for all-solid-state steam electrolysis and solid oxide fuel cells (SOFCs). Structural ordering variation is often driven by chemical composition, which directly correlates with their chemical/physical properties. In the present work, we develop a comprehensive functional perovskite-type phase diagram for the Ba–Ca–Ta–O quaternary system Ba3Ca1+xTa2−xO9−3x/2 (0 ≤ x ≤ 0.36) with a wide chemical composition between 1000 and 1550 °C, coupled with theoretical calculations to investigate the cation ordering in supercells. Furthermore, the impact of cation clustering on the diffusion pathways of O2− ions was evaluated as a case study. Experimentally, precise cation ordering and other structural features are quantitively determined by TOF-neutron and synchrotron X-ray diffraction analyses. This work provides a comprehensive evaluation of some potential applications of the Ba–Ca–Ta–O quaternary system. The electrochemical impedance data were also systematically studied by impedance spectroscopy genetic programming (ISGP). The electrical conductivity was found to increase from x = 0 to x = 0.27 and then decrease for the end member when x = 0.36 due to a decrease in mobile charge carrier concentration. Interestingly, in dry air, the electrical conductivity was found to increase from x = 0 to x = 0.36. However, only Ba3Ca1.18Ta1.82O8.73 (BCT18) and Ba3Ca1.27Ta1.73O8.595 (BCT27) were found to show an increasing trend in conductivity in humid atmospheres, and this indicates that the clustering effect was pO2 dependent. © Royal Society of Chemistry 2024
  • No Thumbnail Available
    Item
    Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping
    (AIP Scitation, 2014) Lee, JJ; Xing, GZ; Yi, JB; Chen, TK; Ionescu, M; Li, S
    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu3+ ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices. © 2014, AIP Publishing LLC.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback