Browsing by Author "Lambeck, K"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemMicroatolls and the record of Holocene sea level that can be derived from them(Australian Geosciences Council, 2012-08-05) Woodroffe, CD; Smithers, SG; McGregor, HV; Fink, D; Lambeck, KThe Great Barrier Reef expedition in 1973 described living and fossil microatolls on the Great Barrier Reef and recognised their significance as sea-level indicators. John Chappell subsequently surveyed and dated Porites microatolls along the mainland and interpreted them in the context of hydro-isostatic adjustment, inferring gradual falling sea level during the past 6000 years. We re-examine the significance of microatolls, providing a detailed account of more than 100 fossil microatolls from Christmas Island in the central Pacific. We relate their elevations to living modern equivalents and compare the sea-level record derived from them with the modelled Holocene isostatically-corrected sea level for this equatorial location. These long-lived massive corals, up to 9 metres in diameter, preserve a biologically-mediated multi-decadal record of sea-level over the past 5000 years. The upper surface of fossil microatolls on the reef flat lie in a narrow elevation range similar to that observed for their modern, living counterparts, implying negligible change of sea level. Further evidence for the lack of major fluctuations in sea level over the period 5000–1000 years BP is provided by corals from the interior of the island. This second population grew prolifically in a large lagoonal setting and is offset from those in open water by about 50 cm. The continuity of microatoll growth precludes significant oscillations of sea level during this time, and accords with geophysical modelling for this site, implying that the ‘eustatic’ contribution from post-6ka ice melt and the isostatic adjustment of the ocean floor to loading cancel each other at this site.
- ItemMid-Pacific microatolls record sea-level stability over the past 5000yr(Geological Society of America, 2012-10-01) Woodroffe, CD; McGregor, HV; Lambeck, K; Smithers, SG; Fink, DThere has been geographical variation in sea level since rapid postglacial melting of polar ice ceased similar to 6 k.y. ago, reflecting isostatic adjustments of Earth and ocean surfaces to past (and ongoing) redistribution of ice and water loads. A new data set of over 100 fossil microatolls from Christmas (Kiritimati) Island provides a Holocene sea-level record of unparalleled continuity. Living reef-flat corals grow up to a low-tide level. Adjacent fossil microatolls, long-lived Porites corals up to several meters in diameter, occur at similar elevations (+/-0.1 m), and extensive fossil microatolls in the island interior are at consistent elevations within each population. Collectively, they comprise an almost continuous sequence spanning the past 5 k.y., indicating that, locally, sea level has been within 0.25 m of its present position, and precluding global sea-level oscillations of one or more meters inferred from less stable locations, or using other sea-level indicators. This mid-Pacific atoll is tectonically stable and far from former ice sheets. The precisely surveyed and radiometrically dated microatolls indicate that sea level has not experienced significant oscillations, in accordance with geophysical modeling, which implies that the eustatic contribution from past ice melt and the isostatic adjustment of the ocean floor to loading largely cancel each other at this site. © 2012, Geological Society of America
- ItemPhasing and amplitude of sea-level and climate change during the penultimate interglacial(Nature Publishing Group, 2009-05) Dutton, A; Bard, E; Antonioli, F; Esat, TM; Lambeck, K; McCulloch, MTEarth's climate has oscillated between short-lived interglacial and extended glacial periods for the past million years. Before the last interglacial, absolutely dated markers of sea level become increasingly rare; hence, our knowledge of sea-level change driven by the waxing and waning of continental ice sheets before that time is largely based on proxy records from deep-sea cores(1-3) that lack direct age control. Here we present precise U-Th ages for a remarkable collection of submerged speleothems(4,5) from Italy, which record three sea-level highstands during the penultimate interglacial period, Marine Isotope Stage 7, from 245,000 to 190,000 years ago. We find that sea level rose above-18m (relative to modern sea level) several thousand years before maximum Northern Hemisphere insolation during the first and third highstands. In contrast, the second highstand, Marine Isotope Stage 7.3, is essentially synchronous with the insolation maximum, and sea level during this highstand only peaked at about 18 m, even though the concurrent insolation forcing was the strongest of the three highstands. We attribute the different phasing and amplitude of the Marine Isotope Stage 7.3 highstand to the extensive continental glaciation that preceded it. This finding highlights the significance of cryosphere response time to the climate system. © 2009, Nature Publishing Group.
- ItemPleistocene dynamics of the interior East Antarctic ice sheet(Geological Society of America, 2010-08) Lilly, K; Fink, D; Fabel, D; Lambeck, KCurrent models describing past configurations of the East Antarctic ice sheet are poorly constrained by observations. Exposure dating of bedrock surfaces using in situ–produced cosmogenic nuclides provides an ideal tool for directly constraining former changes in ice sheet elevation. We present cosmogenic radionuclide 10Be and 26Al measurements in bedrock surfaces and glacially transported cobbles in the Grove Mountains, a group of nunataks within the slow-flowing interior ice sheet dome, hundreds of kilometers from the coastal ice margin and from ice streams. Samples were collected in vertical transects over 500 m of relief. Minimum bedrock and erratic exposure ages show a trend of increasing age with height above the ice sheet, spanning a period from 0.3 to 4.0 Ma and 50–900 ka, respectively. No evidence was found for thicker ice at the Last Glacial Maximum compared to modern ice thickness. The older bedrock exposure ages of 2.5–4.0 Ma require steady-state erosion rates of <0.1 mm k.y.−1. The measured two-isotope bedrock exposure ages are successfully modeled when changes in surface elevation of the ice sheet are described by a combination of linear long-term ice surface lowering and shorter term high-frequency glacial-interglacial oscillations. The best-fit model requires a long-term thinning rate of 50 m m.y.−1 and an elevation change of 100 m over a 100 k.y. glacial cycle. © 2010, Geological Society of America
- ItemUplift rates defined by U-series and C-14 ages of serpulid-encrusted speleothems from submerged caves near Siracusa, Sicily (Italy)(Elsevier, 2009-02) Dutton, A; Scicchitano, G; Monaco, C; Desmarchelier, JM; Antonioli, F; Lambeck, K; Esat, TM; Fifield, LK; McCulloch, MT; Mortimer, GEWe have established a plausible rate of uplift near Siracusa in southeastern Sicily (Italy) over the last glacial-interglacial cycle using U-series ages of submerged speleothem calcite and C-14 ages of calcite serpulid layers that encrust the speleothems during cave submergence. The precisely determined ages of these sea level benchmarks were compared with expected relative sea level position based on glaciohydro-isostatic modeling to assess the rate of uplift in this region. When combined with the age of various late Holocene archaeological sites that have been recently described and characterized in terms of their functional position relative to sea level these data collectively define a rate of uplift <= 0.4 mm a(-1) along this portion of the Sicilian coastline. These results are consistent with an age assignment of marine isotope stage (MIS) 5.3 or 5.5 for the Akradina terrace. which in turn places temporal constraints on paleoshorelines above and below this level. © 2008, Elsevier Ltd.