Browsing by Author "Kromer, B"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAtmospheric 14C variations derived from tree rings during the early Younger Dryas(Elsevier, 2009-12) Hua, Q; Barbetti, M; Fink, D; Kaiser, KF; Friedrich, M; Kromer, B; Levchenko, VA; Zoppi, U; Smith, AM; Bertuch, FAtmospheric radiocarbon variations over the Younger Dryas interval, from ~13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ14C associated with the Younger Dryas onset occurs at ~12,760 cal yr BP, ~240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of ~40‰ followed by several centennial Δ14C variations of 20–25‰. Comparing the tree-ring Δ14C to marine-derived Δ14C and modelled Δ14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ14C variations for the remainder of the Younger Dryas. © 2009, Elsevier Ltd.
- ItemCompatibility of atmospheric 14CO2 measurements: comparing the heidelberg low-level counting facility to international accelerator mass spectrometry (AMS) laboratories(Cambridge University Press, 2016-09-19) Hammer, S; Friedrich, R; Kromer, B; Cherkinsky, A; Lehman, SJ; Meijer, HAJ; Nakamura, T; Palonen, V; Reimer, RW; Smith, AM; Southen, JR; Szidat, S; Turnbull, J; Uchida, MCombining atmospheric Δ14CO2 data sets from different networks or laboratories requires secure knowledge on their compatibility. In the present study, we compare Δ14CO2 results from the Heidelberg low-level counting (LLC) laboratory to 12 international accelerator mass spectrometry (AMS) laboratories using distributed aliquots of five pure CO2 samples. The averaged result of the LLC laboratory has a measurement bias of –0.3±0.5‰ with respect to the consensus value of the AMS laboratories for the investigated atmospheric Δ14C range of 9.6 to 40.4‰. Thus, the LLC measurements on average are not significantly different from the AMS laboratories, and the most likely measurement bias is smaller than the World Meteorological Organization (WMO) interlaboratory compatibility goal for Δ14CO2 of 0.5‰. The number of intercomparison samples was, however, too small to determine whether the measurement biases of the individual AMS laboratories fulfilled the WMO goal. © 2016 by the Arizona Board of Regents on behalf of the University of Arizona