Browsing by Author "Kremer, F"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemHighly efficient visible light catalysts driven by Ti3+-VO-2Ti4+-N3− defect clusters(Wiley, 2018-10-13) Sun, QB; Zhang, SY; Cortie, DL; Langley, J; Cox, N; Frankcombe, TJ; Gao, J; Chen, H; Withers, RL; Kremer, F; Yu, DH; Brink, F; Shi, WS; Liu, YLocal defect structures play significant roles on material properties, but they are seriously neglected in the design, synthesis, and development of highly efficient TiO2-based visible light catalysts (VLCs). Here, we take anatase TiO2 nanocrystals that contain (Ti3+, N3−) ions and have the complicated chemical formula of (Ti1-x4+Tix3+)(O2-2-y-zNy3-□z) as an example, and point out that the formation of Ti3+-VO-2Ti4+-N3− local defect clusters is a key missing step for significantly enhancing VLC properties of host TiO2 nanocrystals. Experimental and theoretical investigations also demonstrate the emergent behaviors of these intentionally introduced defect clusters for developing highly efficient VLCs. This research thus not only provides highly efficient visible light catalysts for various practical applications but also addresses the significance of local defect structures on modifying material properties. © 2019 Wiley-VCH Verlag GmbH & Co.
- ItemHighly efficient visible light catalysts driven by Ti3+‐VO‐2Ti4+‐N3− defect clusters(Wiley, 2018-10-13) Sun, QB; Zhang, SY; Cortie, DL; Langley, J; Cox, N; Frankcombe, TJ; Gao, J; Chen, H; Withers, RL; Kremer, F; Yu, DH; Brink, F; Shi, WS; Liu, YLocal defect structures play significant roles on material properties, but they are seriously neglected in the design, synthesis, and development of highly efficient TiO2‐based visible light catalysts (VLCs). Here, we take anatase TiO2 nanocrystals that contain (Ti3+, N3−) ions and have the complicated chemical formula of ()(□z) as an example, and point out that the formation of Ti3+‐VO‐2Ti4+‐N3− local defect clusters is a key missing step for significantly enhancing VLC properties of host TiO2 nanocrystals. Experimental and theoretical investigations also demonstrate the emergent behaviors of these intentionally introduced defect clusters for developing highly efficient VLCs. This research thus not only provides highly efficient visible light catalysts for various practical applications but also addresses the significance of local defect structures on modifying material properties. © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemLead-free (Ag,K)NbO3 materials forhigh-performance explosive energy conversion(Science Advances, 2020-05-20) Liu, Z; Lu, T; Xue, F; Nie, HC; Withers, RL; Studer, AJ; Kremer, F; Narayanan, N; Dong, XL; Yu, DH; Chen, LQ; Liu, Y; Wang, GSExplosive energy conversion materials with extremely rapid response times have broad and growing applications in energy, medical, defense, and mining areas. Research into the underlying mechanisms and the search for new candidate materials in this field are so limited that environment-unfriendly Pb(Zr,Ti)O3 still dominates after half a century. Here, we report the discovery of a previously undiscovered, lead-free (Ag0.935K0.065)NbO3 material, which possesses a record-high energy storage density of 5.401 J/g, enabling a pulse current ~ 22 A within 1.8 microseconds. It also exhibits excellent temperature stability up to 150°C. Various in situ experimental and theoretical investiga-tions reveal the mechanism underlying this explosive energy conversion can be attributed to a pressure-induced octahedral tilt change from a−a−c+ to a−a−c−/a−a−c+, in accordance with an irreversible pressure-driven ferroelectric-antiferroelectric phase transition. This work provides a high performance alternative to Pb(Zr,Ti)O3 and also guidance for the further development of new materials and devices for explosive energy conversion. Copyright © 2020 The Authors. CC-By 4.0 licence