Browsing by Author "Koppel, DJ"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCurrent understanding and research needs for ecological risk assessments of naturally occurring radioactive materials (NORM) in subsea oil and gas pipelines(Elsevier, 2022-01) Koppel, DJ; Kho, F; Hastings, A; Crouch, D; MacIntosh, A; Cresswell, T; Higgins, SThousands of offshore oil and gas facilities are coming to the end of their life in jurisdictions worldwide and will require decommissioning. In-situ decommissioning, where the subsea components of that infrastructure are left in the marine environment following the end of its productive life, has been proposed as an option that delivers net benefits, including from: ecological benefits from the establishment of artificial reefs, economic benefits from associated fisheries, reduced costs and improved human safety outcomes for operators. However, potential negative impacts, such as the ecological risk of residual contaminants, are not well understood. Naturally occurring radioactive materials (NORM) are a class of contaminants found in some oil and gas infrastructure (e.g. pipelines) and includes radionuclides of uranium, thorium, radium, radon, lead, and polonium. NORM are ubiquitous in oil and gas reservoirs around the world and may form contamination products including scales and sludges in subsea infrastructure due to their chemistries and the physical processes of oil and gas extraction. The risk that NORM from these sources pose to marine ecosystems is not yet understood meaning that decisions made about decommissioning may not deliver the best outcomes for environments. In this review, we consider the life of NORM-contamination products in oil and gas systems, their expected exposure pathways in the marine environment, and possible ecological impacts following release. These are accompanied by the key research priorities that need to better describe risk associated with decommissioning options. © 2021 Elsevier Ltd
- ItemRadiological risk assessment to marine biota from exposure to NORM from a decommissioned offshore oil and gas pipeline(Elsevier Ltd, 2022-08-11) MacIntosh, A; Koppel, DJ; Johansen, MP; Beresford, NA; Copplestone, D; Penrose, B; Cresswell, TScale residues can accumulate on the interior surfaces of subsea petroleum pipes and may incorporate naturally occurring radioactive materials (NORM). The persistent nature of ‘NORM scale’ may result in a radiological dose to the organisms living on or near intact pipelines. Following a scenario of in-situ decommissioning of a subsea pipelinNe, marine organisms occupying the exteriors or interiors of petroleum structures may have close contact with the scale or other NORM-associated contaminated substances and suffer subsequent radiological effects. This case study used radiological dose modelling software, including the ERICA Tool (v2.0), MicroShield® Pro and mathematical equations, to estimate the likely radiological doses and risks of effects from NORM-contaminated scale to marine biota from a decommissioned offshore oil and gas pipeline. Using activity concentrations of NORM (226Ra, 210Po, 210Pb, 228Ra, 228Th) from a subsea pipeline from Australia, environmental realistic exposure scenarios including radiological exposures from both an intact pipe (external only; accounting for radiation shielding by a cylindrical carbon steel pipe) and a decommissioned pipeline with corrosive breakthrough (resulting in both internal and external radiological exposure) were simulated to estimate doses to model marine organisms. Predicted dose rates for both the external only exposure (ranging from 26 μGy/h to 33 μGy/h) and a corroded pipeline (ranging from 300 μGy/h to 16,000 μGy/h) exceeded screening levels for radiological doses to environmental receptors. The study highlighted the importance of using scale-specific solubility data (i.e., Kd) values for individual NORM radionuclides for ERICA assessments. This study provides an approach for conducting marine organism dose assessments for NORM-contaminated subsea pipelines and highlights scientific gaps required to undertake risk assessments necessary to inform infrastructure decommissioning planning. © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
- ItemA review of the potential risks associated with mercury in subsea oil and gas pipelines in Australia(CSIRO, 2022-11-01) Gissi, F; Koppel, DJ; Boyd, A; Kho, F; von Hellfeld, R; Higgins, S; Apte, S; Cresswell, TIn the coming years, the oil and gas industry will have a significant liability in decommissioning offshore infrastructure such as subsea pipelines. The policies around decommissioning vary depending on regional policies and laws. In Australia, the ‘base case’ for decommissioning is removal of all property and the plugging and abandonment of wells in line with the Offshore Petroleum and Greenhouse Gas Storage (OPGGS) Act 2006. Options other than complete removal may be considered where the titleholder can demonstrate that the alternative decommissioning activity delivers equal or better environmental outcomes compared to complete removal and meets all requirements under the OPGGS Act and regulations. Recent research has demonstrated that decommissioning in situ can have significant environmental benefits by forming artificial reefs, increasing marine biodiversity, and providing a potential fishery location. An issue, which has been given less attention, is around contaminants remaining within decommissioned infrastructure and their potential risks to the marine environment. Mercury is a contaminant of concern known to be present in some oil and gas pipelines, but the potential long-term impacts on marine ecosystems are poorly understood. We present a synthesis of information on mercury cycling in the marine environment including key drivers of methylation in sediments and ocean waters, existing models to predict methylmercury concentrations in sediments, and toxicological effects to marine biota. We discuss the applicability of existing water and sediment quality guidelines, and the associated risk assessment frameworks to decommissioning offshore infrastructure contaminated with mercury. Globally, research is needed to provide a comprehensive risk assessment framework for offshore infrastructure decommissioning. We recommend future areas of research to improve our understanding of the potential risks associated with mercury in subsea oil and gas pipelines. © 2022 The Author(s) (or their employer(s)). This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).