Browsing by Author "Kolotygin, VA"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemIonic conductivity and thermal expansion of anion-deficient Sr11Mo4O23 perovskite(Springer Nature, 2020-07-07) Kharton, VV; Tsipis, EV; Kolotygin, VA; Avdeev, M; Kennedy, BJTransport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature
- ItemMixed conductivity and stability of CaFe2O4−δ(Electrochemical Society, 2008-03) Kharton, VV; Tsipis, EV; Kolotygin, VA; Avdeev, M; Viskup, AP; Waerenborgh, JC; Frade, JRThe total conductivity of CaFe2O4-delta, studied in the oxygen partial pressure range from 10(-17) to 0.5 atm at 1023-1223 K, is predominantly p-type electronic under oxidizing conditions. The oxygen ion transference numbers determined by the steady-state oxygen permeation and faradaic efficiency measurements vary in the range of 0.2 to 7.2 x 10(-4) at 1123-1273 K, increasing with temperature. No evidence of any significant cationic contribution to the conductivity was found. The Mossbauer spectroscopy, thermogravimetry, and X-ray diffraction (XRD) showed that the orthorhombic lattice of calcium ferrite is essentially intolerant to the oxygen vacancy formation and to doping with lower-valence cations, such as Co and Ni. The oxygen nonstoichiometry (delta) is almost negligible, 0.0046-0.0059 at 973-1223 K and p(O-2) = 10(-5)-0.21 atm, providing a substantial dimensional stability of CaFe2O4-delta ceramics. The average linear thermal expansion coefficients, calculated from the controlled-atmosphere dilatometry and high-temperature XRD data, are (9.6-13.9) x 10(-6) K-1 in the oxygen pressure range from 10(-8) to 0.21 atm at 873-1373 K. Decreasing P(02) results in a modest lattice contraction and in the p-n transition indicated by the conductivity and Seebeck coefficient variations. The phase decomposition of CaFe2O4-delta occurs at oxygen chemical potentials between the low-p(O-2) stability limit of Ca2Fe2O5-delta brownmillerite and the hematite/magnetite boundary in binary Fe-O system. © 2008, Electrochemical Society Inc.
- ItemPhase behavior and mixed ionic-electronic conductivity of Ba4Sb2O9(Elsevier Science BV., 2013-03-21) Dunstan, MT; Pavan, AF; Kharton, VV; Avdeev, M; Kimpton, JA; Kolotygin, VA; Tsipis, EV; Ling, CDThe 6H-type perovskite phase Ba4Sb2O9, which decomposes in air below 600 K, is found to survive to room temperature in a CO2-free atmosphere. It shows substantial mixed protonic, oxide ionic and electronic conductivity. Compared to Ba4Nb2O9 and Ba4Ta2O9, Ba4Sb2O9 shows higher ionic conductivity due to the relatively easy reducibility of Sb5 +, but lower electronic conductivity due to the predominantly n-type conductivity provided by the Sb5 +/Sb3 + redox couple which leads to reduced hole concentration under oxidizing conditions. Variable temperature synchrotron X-ray diffraction studies carried out in situ under controlled atmospheres reveal a strong monoclinic distortion below 1150 K. The hexagonal to monoclinic transition is slow, does not show second-order behavior, is strongly dependent on atmosphere, and coincides with the loss of ~ 0.4 molecules of H2O per formula unit of Ba4Sb2O9. All of this suggests an important structural role for protons or hydroxide ions in the monoclinic phase. © 2013, Elsevier Ltd.