Browsing by Author "Ko, KY"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of AlF3-coated Li4Ti5O12 on the performance and function of the LiNi0.5Mn1.5O4||Li4Ti5O12 full battery—an in-operando neutron powder diffraction study(Frontiers Media S.A., 2018-09-10) Liang, GM; Pillai, AS; Peterson, VK; Ko, KY; Chang, CM; Lu, CZ; Liu, CE; Liao, SC; Chen, JM; Guo, ZP; Pang, WKThe LiNi0.5Mn1.5O4 ||Li4Ti5O12 (LMNO||LTO) battery possesses a relatively-high energy density and cycle performance, with further enhancement possible by application of an AlF3 coating on the LTO electrode particles. We measure the performance enhancement to the LMNO||LTO battery achieved by a AlF3 coating on the LTO particles through electrochemical testing and use in-operando neutron powder diffraction to study the changes to the evolution of the bulk crystal structure during battery cycling. We find that the AlF3 coating along with parasitic Al doping slightly increases capacity and greatly increases rate capability of the LTO electrode, as well as significantly reducing capacity loss on cycling, facilitating a gradual increase in capacity during the first 50 cycles. Neutron powder diffraction reveals a structural response of the LTO and LNMO electrodes consistent with a greater availability of lithium in the battery containing AlF3-coated LTO. Further, the coating increases the rate of structural response of the LNMO electrode during charge, suggesting faster delithiation, and enhanced Li diffusion. This work demonstrates the importance of studying such battery performance effects within full configuration batteries. Copyright © 2018 Liang, Pillai, Peterson, Ko, Chang, Lu, Liu, Liao, Chen, Guo and Pang.
- ItemA long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping(John Wiley & Sons, Inc, 2020-03-23) Liang, GM; Wu, ZB; Didier, C; Zhang, WC; Cuan, J; Li, BH; Ko, KY; Hung, PY; Lu, CZ; Chen, YZ; Leniec, G; Kaczmarek, SM; Johannessen, B; Thomsen, L; Peterson, VK; Pang, WK; Guo, ZPSpinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fdurn:x-wiley:14337851:media:anie202001454:anie202001454-math-0001 m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices. © 2020 Wiley-VCH Verlag GmbH & Co