Browsing by Author "Kim, MJ"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemCultural heritage project at Australian Nuclear Science and Technology Organisation (ANSTO)(Springer Nature, 2022-01-25) Salvemini, F; White, R; Levchenko, VA; Smith, AM; Pastuovic, Z; Stopic, A; Luzin, V; Tobin, MJ; Puskar, L; Howard, DL; Davis, J; Avdeev, M; Gatenby, S; Kim, MJ; Grazzi, F; Sheedy, K; Olsen, SR; Raymond, CA; Lord, C; Richards, C; Bevitt, JJ; Popelka-Filcoff, RS; Lenehan, CE; Ives, S; Dredge, P; Yip, A; Brookhouse, MT; Austin, AGThe Australian Nuclear Science and Technology Organization (ANSTO) is the home of Australia’s most significant landmark and national infrastructure for research. ANSTO operates one of the world’s most modern nuclear research reactors, OPAL; a comprehensive suite of neutron beam instruments; the Australian Synchrotron; the Electron Microscope Facility; and the Center for Accelerator Science. Over the years, the suite of nuclear methods available across ANSTO’s campuses has been increasingly applied to study a wide range of heritage materials. Since 2015 the strategic research project on cultural heritage was initiated in order to promote access to ANSTO’s capabilities and expertise, unique in the region, by cultural institution and researchers. This chapter offers a compendium of ANSTO nuclear capabilities most frequently applied to cultural heritage research. A series of innovative, interdisciplinary, and multi-technique studies conducted in close collaboration with Australian museums, institutions, and universities is also showcased. It includes research on dating Aboriginal Australian rock art and fingerprinting the sources of ochre pigments; rediscovering the technological knowledge in the making of early coinage and ancient weapons; virtually unwrapping the content of votive mummies from ancient Egypt; and investigating and restoring the original layer of a painting that can be explored by the museum audience in a novel type of exhibition based on an immersive, interactive, and virtual environment. © 2022 Springer Nature Switzerland AG
- ItemHydrogen sorption behaviour of Mg-5wt.%La alloys after the initial hydrogen absorption process(Elsevier B. V., 2022-04-29) Kim, MJ; Tan, XF; Gu, QF; McDonald, SD; Ali, Y; Matsumura, S; Nogita, KIn our earlier study, it has been shown that trace Na additions can improve the reaction kinetics of Mg–5%La (wt.%) alloys during the first absorption. However, the subsequent hydrogen desorption/absorption process of the Mg–5%La after the first absorption has not been investigated. In this study, we have investigated the hydrogen sorption behaviour of the Mg–5%La alloy after the first absorption in terms of phase evolution, and lattice expansion properties during desorption as function of temperature using in-situ synchrotron Powder X-ray Diffraction (PXRD) and in-situ High Voltage Transmission Electron Microscopy (HVTEM). Two distinct phase evolutions, a continuous phase transformation of LaH3 → LaH2 + ½ H2 (from 250 °C) and decomposition of MgH2 → Mg + H2 (between 440 and 460 °C) were identified during the desorption. It is determined that this alloy is cyclable in the absence of Mg12La intermetallic during the subsequent absorption/desorption cycling after the first hydrogen absorption. © 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd
- ItemIn-situ x-ray diffaction for hydrogen sorption study of Mg-La alloys(Australian Nuclear Science and Technology Organisation, 2021-11-24) Kim, MJ; Tan, XF; Gu, QF; McDonald, SD; Ali, Y; Matsumura, S; Nogita, KTrace Na additions can enhance the reaction kinetics of Mg-5%La (wt.%) alloys, resulting in a potential hydrogen storage material. In this study, we used in-situ synchrotron Powder X-ray Diffraction (PXRD) to examine the hydrogen sorption behaviour of the Na-modified Mg-5%La. A setup equipped with a hydrogen gas flow cell and a hot air blower at the Powder Diffraction beamline of the Australian Synchrotron facility is used to allow for PXRD data collection during hydrogen sorption reactions to study the phase evolutions and the cyclability of the alloy. To shed light on the underlying processes during the reactions, in-situ desorption and absorption were performed in a hydrogen atmosphere between 30-480 °C and atmospheric pressure to 2MPa H2. Rietveld refinement was conducted using the TOPAS-Academic V6 software to calculate the weight percentage and lattice expansion of each phase in the sample. In addition, in-situ High Voltage Transmission Electron Microscopy (HVTEM) was used as a complementary technique to study the volume expansion properties during desorption as a function of temperature. © The Authors
- ItemAn insight into a Shang dynasty bronze vessel by nuclear techniques(MDPI, 2023-01-25) Salvemini, F; Patuovic, Z; Stopic, A; Kim, MJ; Gatenby, SA bronze wine vessel attributed to 1600–1046 B.C., Shang dynasty in China, an object from the East Asian Collection of the Museum of Applied Arts and Sciences in Sydney (Australia), was studied using a non-destructive scientific analytical protocol based on the synergic combination of nuclear techniques. Gamma spectrometry, neutron-computed tomography, and proton-induced X-ray emission (PIXE) spectroscopy were applied to gain a better insight into the structural and compositional features of the artefact to prove its authenticity. Gamma spectrometry was performed to assess the risk of excessive sample activation induced by long exposure to the neutron beam and to determine the bulk elemental composition. Based on neutron-computed tomography, the porosities and the thickness of the metal wall were evaluated and found consistent with the piece-mould casting technology adopted by craftsmen during the Shang dynasty in China. Finally, PIXE spectroscopy demonstrated the use of a ternary (copper–tin-leaded) alloy and the nature of mineralisation on the surface. © 2023 The authors.
- ItemNa-modified cast hypo-eutectic Mg–Mg2Si alloys for solid-state hydrogen storage(Elsevier B. V., 2022-08-01) Tan, XF; Kim, MJ; Gu, QF; Pinzon Piraquive, J; Zeng, G; McDonald, SD; Nogita, KMg2Si is a promising catalyst for Mg-based H2 storage materials due to its low cost, light weight, and non-toxic properties. This study investigates the effects of Na in hypo-eutectic Mg-1wt.%Si alloys for H2 storage applications. The addition of trace amounts of Na is vital in improving the H2 sorption kinetics, achieving a H2 storage capacity of 6.72 wt.% H at 350 °C under 2 MPa H2, compared to 0.31 wt.% H in the non-Na added alloy. The hydrogen sorption mechanisms were analysed with Johnson-Mehl-Avrami-Kolmogorov models. It was identified that Na affects the surface of the Mg alloys, forming porous Na2O and NaOH in addition to MgO, facilitating the diffusion of H2. Finally, in-situ synchrotron powder X-ray diffraction showed the Mg2Si catalyst is stable during the H2 sorption reactions. This result demonstrates the potential use of Mg–Mg2Si casting alloys for large scale hydrogen storage and transportation applications. © 2022 Elsevier B.V
- ItemSamurai’s swords, a non-invasive investigation by neutron techniques(Scientific.Net, 2020-03-01) Salvemini, F; Luzin, V; Avdeev, M; Tremsin, AS; Sokolova, AV; Gregg, AWT; Wensrich, CM; Gatenby, S; Kim, MJ; Grazzi, FA synergic combination of neutron techniques was applied to characterize non-invasively the laminated structure of a set of ancient katana, part of the East Asian Collection of the Museum of Applied Arts and Sciences (MAAS) in Sydney. Neutron tomography, diffraction, residual stress and Bragg-edge transmission analyses were undertaken on samples of well-known origin, time period and authorship to create a reference database on the main manufacturing methods developed by Japanese swordsmiths. In the attempt to attribute mumei (no-signature) blades basing on a scientific analytical method rather than a stylistic analysis, data from the reference samples were benchmarked against the results obtained from the unknown blade to identify differences and commonalities in the production process. © 2020 by Trans Tech Publications Ltd.
- ItemStructural characterization of ancient Japanese swords from MAAS using neutron strain scanning measurements(Materials Research Forum LLC, 2021-07-03) Salvemini, F; Luzin, V; Grazzi, F; Gatenby, S; Kim, MJThe current paper presents a forensic study that aims to characterize non-invasively the laminated structure of a set of Samurai’s swords, part of the East Asian Collection of the Museum of Applied Arts and Sciences (MAAS) in Sydney, via strain scanning measurements. Neutron residual stress analyses were undertaken on samples of well-known origin, time period and authorship to create a reference database on the main lamination methods developed by Japanese swordsmiths. The benchmark data were cross-matched with results obtained from a mumei (no-signature) blade in order to attribute its manufacturing tradition based on qualitative and quantitative data rather than stylistic criteria. Maps of two stress components and d0-values in the transverse crosssection of each sword were determined as a result of the neutron diffraction experiment with submillimeter spatial resolution. Since these two material characteristics are induced by the manufacturing process, analysis and comparison of the results allows drawing conclusions about variability or similarity of the actual production techniques of the Japanese swords. © The Authors