Browsing by Author "Kent, D"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe characterisation and formation of novel microstructural features in a Ti−Nb−Zr−Mo−Sn alloy manufactured by Laser Engineered Net Shaping (LENS)(Elsevier, 2021-01) Zhu, HL; Wang, ZY; Muránsky, O; Davis, J; Yu, S; Kent, D; Wang, G; Dargusch, MSNovel microstructural features were found in the Ti−Nb−Zr−Mo−Sn alloy manufactured by Laser Engineered Net Shaping (LENS). Examination of the microstructure showed that the fabricated sample exhibits a layered morphology with arced deposit boundaries. Novel distributions and morphologies of various phases including β, α, α'' and ω were detected in the LENS-manufactured part which substantially differ to conventionally processed alloy counterparts. The β grains and subgrains spread over multiple deposits and layers, aligned to the build direction, forming a complex network microstructure comprising large highly textured columnar grains aligned to β phase <001> orientations. The α precipitates have needle-like shapes and are widely distributed across a majority of the deposited layers, whereas the nanoscale ω particles were present in regions absent of α precipitation. Localised, massively transformed α'' phase with a very long and curved rod-like shape and substantial surface defects was identified. The formation of these novel microstructural features is investigated and discussed in the context of the characteristics of the LENS fabrication process. The microstructures are attributed to the complex thermal history in the unique deposit-by-deposit and layer-by-layer method employed during LENS additive manufacturing in conjunction with the complex precipitation behaviours exhibited by TiNb-based alloys. The characteristics and formation mechanisms of the LENS-manufactured Ti−Nb−Zr−Mo−Sn alloy microstructures revealed here provide a basis to optimize LENS and post-LENS heat treatment processes to optimize microstructures for improved performance. © 2020 Elsevier B.V
- ItemThe effects of Bi substitution for Sn on mechanical properties of Sn-based lead-free solders(Springer Nature, 2021-08-02) Raza, M; Shewchenko, L; Olofinjana, A; Kent, D; Mata, JP; Haque, RPb-free solders are gaining ground as the optimum choice for electrical interconnect materials, however, their higher melting temperature around 217 °C is still an issue that restricts wider adoption. The potential to employ Bi substitution for Sn to lower solder joint processing temperatures has been widely considered. In this work, the mechanical properties of eutectic SAC with gradually increasing Bi substitution up to 10 wt% Bi was studied. It is shown that fracture strength (σf) increases with Bi additions from 50 MPa plateauing at 60 MPa between 1.4 and 1.8% Bi which represents the limits of solid solution strengthening. Over this substitutional range, strain at fracture (εf) dropped from 30 to 10% which was also evidenced by smaller percentage reduction in area (%RA). The σf was nearly 80 MPa for 2% Bi increasing gradually with increasing Bi concentrations and peaking at 93 MPa for 7% Bi whilst maintaining 10% elongation at fracture. X-ray diffraction and DSC thermal studies suggests that the solubility limit of Bi in β-Sn (in the multicomponent SAC) is less than 2 wt% Bi. With the aid of small-angle neutron Scattering (SANS) and ultra-small-angle neutron scattering (USANS), it was found that the scattering intensity changes for alloys with Bi content in the range 0.8 – 1.5wt% compared to ternary SAC with less than 0.8% Bi at low scattering factors (Q > 10 - 2Å - 1) signifying microstructural differences at length scales of the order of 10–100 nm. There were no differences observed in scattering for alloy samples with more than 2 wt% Bi. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.