Browsing by Author "Katsifis, A"
Now showing 1 - 20 of 64
Results Per Page
Sort Options
- ItemActivation of signal pathways and the resistance to anti-EGFR treatment in colorectal cancer(Wiley-Blackwell, 2010-12-01) Chen, JZ; Huang, XF; Katsifis, AColorectal cancer is the third most common cancer with a 5-year survival rate of less than 10%. It is caused by alterations of multiple signal pathways which are affected by both genetic and environmental factors. In some cases, EGFR is important in the carcinogenesis of colorectal cancer suggesting anti-EGFR therapy may be a potential treatment option. However, in other cases it is not effective, which may be related to its down-stream targeted gene mutations. KRAS is highly emphasized in the literature but other mutations like Src, PIK3CA, and BRAF may also be important. Furthermore, obesity may decrease the effectiveness of anti-EGFR treatment as it increases the risk factors for colorectal cancer. Using next-generation sequencing technology, it may be possible to identify all gene mutations in an individual with colorectal cancer. Therefore, gene mutations affecting anti-EGFR therapy in colorectal cancer patients can be identified. © 2010, Wiley-Blackwell. The definitive version is available at www3.interscience.wiley.com
- ItemAlternative method for Cu-64 radioisotope production(Elsevier, 2008-05-12) Le, VS; Howse, J; Zaw, M; Pellegrini, PA; Katsifis, A; Greguric, ID; Weiner, RThe method for 64Cu production based on a 64Ni target using an 18 MeV proton energy beam was developed. The studies on the optimisation of targetry for the 18 MeV proton bombardments were performed in terms of the cost-effective target utilisation and purity of the 64Cu product. The thickness-specific 64Cu yield (μCi/(μA×μm)) was introduced into the optimisation calculation with respect to cost-effective target utilisation. A maximum target utilisation efficacy factor (TUE) was found for the proton energy range of 2.5–13 MeV with corresponding target thickness of 36.2 μm. With the optimised target thickness and proton energy range, the 64Ni target thickness saving of 45.6% was achieved, while the overall 64Cu yield loss is only 23.9%, compared to the use of the whole effective proton energy range of 0–18 MeV with target thickness of 66.6 μm. This optimisation has the advantage of reducing the target amount to a reasonable level, and therefore the cost of the expensive 64Ni target material. The 64Ni target electroplated on the Au–Tl multi layer coated Cu-substrate was a new and competent design for an economic production of high quality 64Cu radioisotope using an 18 MeV proton energy cyclotron or a 30 MeV cyclotron with proton beam adjustable to 18 MeV. In this design, the Au coating layer plays a role of protection of “cold” Cu leakage from the Cu substrate and Tl serves to depress the proton beam energy (from 18 MeV to the energy optimised value 13 MeV). The ion exchange chromatographic technique with a gradient elution was applied to improve the 64Cu separation with respect to reducing the processing time and control of 64Cu product quality. © 2009, Elsevier Ltd.
- ItemAssessment of neuroinflammation in transferred EAE via a translocator protein ligand(IntechOpen, 2012-02-03) Mattner, F; Staykova, M; Callaghan, PD; Berghofer, PJ; Ballantyne, P; Grégoire, MC; Fordham, S; Pham, TQ; Rahardjo, GL; Jackson, TW; Linares, D; Katsifis, ANeuroinflammation is involved in the pathogenesis and progression of neurological disorders such as Alzheimer's disease and multiple sclerosis (MS) (Doorduin et al., 2008). MS has been considered a T cell-mediated autoimmune disorder of the central nervous system (CNS), characterized by inflammatory cell infiltration and myelin destruction (Hauser et al., 1986) and focal demyelinated lesions in the white matter are the traditional hallmarks of MS. However more recent evidence suggests more widespread damage to the brain and spinal cord, to areas of white matter distant from the inflammatory lesions and demyelination of deep and cortical grey matter (McFarland & Martin, 2007). Experimental autoimmune encephalomyelitis (EAE) is an extensively used model of T-cell mediated CNS inflammation; modelling disease processes involved in MS. EAE can be induced in several species by immunization with myelin antigens or via adoptive transfer of myelin-reactive T cells. The models of EAE in rodents [actively induced and transferred] provide information about different phases [inflammation, demyelination and remyelination] and types [monophasic, chronic-relapsing and chronic-progressive] of the human disease multiple sclerosis and a vast amount of clinical and histopathologic data has been accumulated through the decades. A key aim of current investigations is developing the ability to recognise the early symptoms of the disease and to follow its course and response to treatment. Molecular imaging is a rapidly evolving field of research that involves the evaluation of biochemical and physiological processes utilising specific, radioactive, fluorescent and magnetic resonance imaging probes. However, it is positron emission tomography (PET) and single photon emission computer tomography (SPECT) which, due to their exquisite sensitivity involving specifically designed radiolabelled molecules, that is leading the way in molecular imaging and has greatly enabled the non-invasive “visualisation” of many diseases in both animal models and humans. Furthermore, PET and SPECT molecular imaging are providing invaluable imaging data based on a biochemical-molecular biology interaction rather than from the traditional anatomical view. Increasingly, PET and SPECT radiotracers have been exploited to study or identify molecular biomarkers of disease, monitor disease progression, determining the effects of a drug on a particular pathology and assess the pharmacokinetic behaviour of pharmaceuticals in vivo. Significantly, these new imaging systems provide investigators with an unprecedented ability to examine and measure in vivo biological and pharmacological processes over time in the same animals thus reducing experimental variability, time and costs. Molecular imaging based on the radiotracer principle allows chemical processes ranging from cellular events, to cellular communication and interaction in their environment, to the organisation and function of complete tissue and organs to be studied in real time without perturbation. One of the key benefits of molecular imaging is a technique that allows longitudinal studies vital for monitoring intra-individual progression in disease, or regression with supplementary pharmacotherapies. This is key in animal models of diseases such as MS, where there is significant intra-individual variability in the disease course and severity. Recent investigations have proposed the translocator protein (TSPO; 18 kDa), also known as the peripheral benzodiazepine receptor (PBR), as a molecular target for imaging neuroinflammation (Chen & Guilarte, 2008; Doorduin et al., 2008; Papadopoulos et al., 2006). TSPO (18 kDa) is a multimeric protein consisting of five transmembrane helices, which, in association with a 32 kDa subunit that functions as a voltage dependent anion channel and a 30 kDa subunit that functions as an adenine nucleotide carrier forms part of a hetero-oligomeric complex (McEnery et al., 1992) responsible for cholesterol, heme and calcium transport in specific tissue. TSPO is primarily located on the outer mitochondrial membrane and is predominantly expressed in visceral organs (kidney, heart) and the steroid hormone producing cells of the adrenal cortex, testis and ovaries. In the central nervous system (CNS), TSPO is sparsely expressed under normal physiological conditions, however its expression is significantly upregulated following CNS injury (Chen et al., 2004; Papadopoulos et al., 1997; Venneti et al., 2006; Venneti, et al., 2008). Several studies have identified activated glial cells as the cells responsible for TSPO upregulation in inflamed brain tissue, both in humans and in experimental models (Mattner et al., 2011; Myers et al., 1991a; Stephenson et al., 1995; Vowinckel et al., 1997) and the TSPO ligand [11C]-PK11195 was one of the first PET ligands used for imaging activated microglia in various neurodegenerative diseases (Venneti et al., 2006). Although [11C]-(R)-PK11195 is widely used for imaging of microglia, its considerable high plasma protein binding, high levels of nonspecific binding, relatively poor blood–brain barrier permeability and short half-life, limits its use in brain imaging (Chauveau et al., 2008). Recently, alternative PET radioligands for TSPO including the phenoxyarylacetamide derivative [11C]-DAA1106 and its analogues (Gulyas et al., 2009; Takano et al., 2010; Venneti et al., 2008), the imidazopyridines (PBR111) and its analogues (Boutin et al., 2007a; Fookes et al., 2008) and the pyrazolo[1,5-a]pyrimidine derivatives [18F]-DPA-714 and [11C]-DPA-713 (Boutin et al., 2007b; James et al., 2008) have been investigated. In addition to imaging with PET, recent advances in new generation of hybrid SPECT imaging systems enabling increased resolution and morphological documentation with associated computed tomography have been made for use clinically and preclinically. These advances have created a need and an opportunity for SPECT tracers; particularly those incorporating the longer lived radiotracer iodine-123 (t ½ = 13.2 h), to facilitate extended longitudinal imaging studies. In this study the recently developed high-affinity TSPO, SPECT ligand, 6-chloro-2-(4′-iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE , was used to explore the expression of activated glia in a model of transferred EAE (tEAE). [123I]-CLINDE has demonstrated its potency and specificity for TSPO binding, its ability to penetrate the blood-brain barrier and suitable pharmacokinetics for SPECT imaging studies (Mattner et al., 2008). It has also been shown that [123I]-CLINDE was able to detect in vivo inflammatory processes characterized by increased density of TSPO in several animal models (Arlicot et al., 2008; Arlicot et al., 2010; Mattner et al., 2005; Mattner et al., 2011; Song et al., 2010), thus representing a promising SPECT radiotracer for imaging neuroinflammation. The present study aimed to investigate the effectiveness of [123I]-CLINDE to detect and quantify the activated glia and consequently correlate the intensity of TSPO upregulation with the severity of disease in a model of tEAE. © 2022 IntechOpen (Open Access).
- ItemAutomated radiosynthesis of [18F]PBR111 and [18F]PBR102 using the TracerLab FXFN and TracerLab MXFDG module for imaging the peripheral benzodiazepine receptor with PET(Pergamon-Elsevier Science Ltd, 2012-01-01) Bourdier, T; Pham, TQ; Henderson, D; Jackson, TW; Lam, P; Izard, M; Katsifis, A[F-18]PBR111 and [F-18]PBR102 are selective radioligands for imaging of the Peripheral Benzodiazepine Receptor (PBR). We have developed a fully automated method for the radiosynthesis of [F-18]PBR111 and [F-18]PBR102 in the Tracerlab FXFN (30 +/- 2% radiochemical yield non-decay-corrected for both tracers) and Tracerlab MXFDG (25 +/- 2% radiochemical yield non-decay-corrected for both tracers) from the corresponding p-toluenesulfonyl precursors. For all tracers, radiochemical purity was > 99% and specific activity was > 150 GBq/mu mol after less than 60 min of preparation time. © 2012, Elsevier Ltd.
- ItemCentral nervous system expression and PET imaging of the translocator protein in relapsing–remitting experimental autoimmune encephalomyelitis(Society of Nuclear Medicine and Molecular Imaging, 2013-01-15) Mattner, F; Staykova, M; Berghofer, PJ; Wong, HJ; Fordham, S; Callaghan, PD; Jackson, T; Pham, TQ; Grégoire, MC; Zahra, D; Rahardjo, GL; Linares, D; Katsifis, AGlial neuroinflammation is associated with the development and progression of multiple sclerosis. PET imaging offers a unique opportunity to evaluate neuroinflammatory processes longitudinally in a noninvasive and clinically translational manner. (18)F-PBR111 is a newly developed PET radiopharmaceutical with high affinity and selectivity for the translocator protein (TSPO), expressed on activated glia. This study aimed to investigate neuroinflammation at different phases of relapsing-remitting (RR) experimental autoimmune encephalomyelitis (EAE) in the brains of SJL/J mice by postmortem histologic analysis and in vivo by PET imaging with (18)F-PBR111. METHODS: RR EAE was induced by immunization with PLP(139-151) peptide in complete Freund's adjuvant. Naive female SJL/J mice and mice immunized with saline-complete Freund's adjuvant were used as controls. The biodistribution of (18)F-PBR111 was measured in 13 areas of the central nervous system and compared with PET imaging results during different phases of RR EAE. The extents of TSPO expression and glial activation were assessed with immunohistochemistry, immunofluorescence, and a real-time polymerase chain reaction. RESULTS: There was significant TSPO expression in all of the central nervous system areas studied at the peak of the first clinical episode and, importantly, at the preclinical stage. In contrast, only a few TSPO-positive cells were observed at the second episode. At the third episode, there was again an increase in TSPO expression. TSPO expression was associated with microglial cells or macrophages without obvious astrocyte labeling. The dynamics of (18)F-PBR111 uptake in the brain, as measured by in vivo PET imaging and biodistribution, followed the pattern of TSPO expression during RR EAE. CONCLUSION: PET imaging with the TSPO ligand (18)F-PBR111 clearly reflected the dynamics of microglial activation in the SJL/J mouse model of RR EAE. The results are the first to highlight the discrepancy between the clinical symptoms of EAE and TSPO expression in the brain, as measured by PET imaging at the peaks of various EAE episodes. The results suggest a significant role for PET imaging investigations of neuroinflammation in multiple sclerosis and allow for in vivo follow-up of antiinflammatory treatment strategies. © 2013 Society of Nuclear Medicine and Molecular Imaging, Inc.
- ItemCharacterisation of peripheral benzodiazepine receptors changes in early phase of epileptogenesis in the rat with PET and [18F]PBR111(Society of Nuclear Medicine, 2009-05) Grégoire, MC; Dedeurwaerdere, S; Callaghan, PD; Loc'h, C; Pham, TQ; Katsifis, AThe current project aims at investigating the role of microglial activation in epileptogenesis by estimating PBR changes in the rat brain with a new and highly specific PBR ligand, [18F]PBR111, during the early phase, i.e. one week after status epilepticus induced by kainic acid (KA). Methods Four controls and 6 KA rats were scanned for 180 minutes with our small animal PET/CT under a triple-injection protocol. The results presented here cover only the first 60 minutes after injection of 0.06nmoles of [18F]PBR111. Arterial blood samples were withdrawn and metabolite corrected plasma time-activity curves were derived. Each CT and PET data were co-registered to an age and strain matched rat brain atlas containing 25 Regions-Of-Interest (ROIs). The Volume of Distribution (Vd) were calculated for each region. Whole-brain-normalised Vd (nVd) were also calculated to assess local variations. Results Compared to controls, KA-treated rats show a 2 to 3-fold increase of the Vd in all brain areas except the midbrain. No significant asymmetry was detected (< 9%), so the ROIs were grouped. Normalized Vd values (Table 1) show that Amygdala, Striata, Thalamus and Hippocampus are predominantly involved. No significant changes were detected in the midbrain and all cortical areas. Estimates of receptors densitiy (Bmax) and apparent affinity (KdVr) will be calculated from the full kinetics (three phases) and reported later. Conclusions This in vivo imaging study has identified significant microglial activation during early epileptogenesis in several brain regions which are known to play a key role in chronic epilepsy.
- ItemClusterin facilitates in vivo clearance of extracellular misfolded proteins(Springer Basel AG, 2011-12-01) Wyatt, AR; Yerbury, JJ; Berghofer, PJ; Greguric, ID; Katsifis, A; Dobson, CM; Wilson, MRThe extracellular deposition of misfolded proteins is a characteristic of many debilitating age-related disorders. However, little is known about the specific mechanisms that act to suppress this process in vivo. Clusterin (CLU) is an extracellular chaperone that forms stable and soluble complexes with misfolded client proteins. Here we explore the fate of complexes formed between CLU and misfolded proteins both in vitro and in a living organism. We show that proteins injected into rats are cleared more rapidly from circulation when complexed with CLU as a result of their more efficient localization to the liver and that this clearance is delayed by pre-injection with the scavenger receptor inhibitor fucoidan. The CLU– client complexes were found to bind preferentially, in a fucoidan-inhibitable manner, to human peripheral blood monocytes and isolated rat hepatocytes and in the latter cell type were internalized and targeted to lysosomes for degradation. The data suggest, therefore, that CLU plays a key role in an extracellular proteostasis system that recognizes, keeps soluble, and then rapidly mediates the disposal of misfolded proteins. © 2012, Springer.
- ItemComparison of in vivo binding properties of the 18-kDa translocator protein (TSPO) ligands [18F]PBR102 and [18F]PBR111 in a model of excitotoxin-induced neuroinflammation(Springer Link, 2015-01) Callaghan, PD; Wimberley, CA; Rahardjo, GL; Berghofer, PJ; Pham, TQ; Jackson, TW; Zahra, D; Bourdier, T; Wyatt, N; Greguric, ID; Howell, NR; Siegele, R; Pastuovic, Z; Mattner, F; Loc'h, C; Grégoire, MC; Katsifis, AThe in vivo binding parameters of the novel imidazopyridine TSPO ligand [18F]PBR102 were assessed and compared with those of [18F]PBR111 in a rodent model of neuroinflammation. The validity of the key assumptions of the simplified reference tissue model (SRTM) for estimation of binding potential (BP) was determined, with validation against a two-tissue compartment model (2TC). Methods Acute neuroinflammation was assessed 7 days after unilateral stereotaxic administration of (R,S)-α-amino-3-hydroxy-5-methyl-4-isoxazolopropionique (AMPA) in anaesthetized adult Wistar rats. Anaesthetized rats were implanted with a femoral arterial cannula then injected with a low mass of [18F]PBR102 or [18F]PBR111 and dynamic images were acquired over 60 min using an INVEON PET/CT camera. Another population of rats underwent the same PET protocol after pretreatment with a presaturating mass of the same unlabelled tracer (1 mg/kg) to assess the validity of the reference region for SRTM analysis. Arterial blood was sampled during imaging, allowing pharmacokinetic determination of radiotracer concentrations. Plasma activity concentration–time curves were corrected for unchanged tracer based on metabolic characterization experiments in a separate cohort of Wistar rats. The stability of neuroinflammation in both imaging cohorts was assessed by [125I] CLINDE TSPO quantitative autoradiography, OX42/GFAP immunohistochemistry, Fluoro-Jade C histology, and elemental mapping using microparticle-induced x-ray emission spectroscopy. The BP of each ligand were assessed in the two cohorts of lesioned animals using both SRTM and a 2TC with arterial parent compound concentration, coupled with the results from the presaturation cohort for comparison and validation of the SRTM. Results The BPs of [18F]PBR102 [18F]PBR111 were equivalent, with improved signal-to-noise ratio and sensitivity compared with [11C]PK11195. The presaturation study showed differences in the volume of distribution between the ipsilateral striatum and the striatum contralateral to the injury (0.7) indicating that an assumption of the SRTM was not met. The modelling indicated that the BPs were consistent for both ligands. Between the SRTM and 2TC model, the BPs were highly correlated, but there was a bias in BP. Conclusion [18F]PBR102 and [18F]PBR111 have equivalent binding properties in vivo, displaying significantly greater BPs with lower signal-to-noise ratio than [11C]PK11195. While an assumption of the SRTM was not met, this modelling approach was validated against 2TC modelling for both ligands, facilitating future use in longitudinal PET imaging of neuroinflammation.© 2014, Springer Nature
- ItemDecreased vesicular acetylcholine transporter and α4β2 nicotinic receptor density in the rat brain following 192 IgG-saporin immunolesioning(Elsevier, 2007-03-26) Quinlivan, M; Chalon, S; Vergote, J; Henderson, J; Katsifis, A; Kassiou, M; Guilloteau, DDegeneration of cholinergic neurons is a well known characteristic of Alzheimer's disease (AD). Two radioligands were studied in a rat model of cholinergic degeneration to evaluate their potential efficacy for molecular imaging of AD. Following specific cholinergic-cell immunolesioning with 192 IgG-saporin (SAP), ex vivo autoradiography was performed with 123IBVM, a radioligand which targets the vesicular acetylcholine transporter (VAChT). Following the decay of 123I, the same animals had in vitro autoradiography performed with 125I-A-85380, a marker for nicotinic acetylcholine receptors (nAChRs). As expected significant, widespread decreases in 123IBVM uptake were observed in SAP treated animals. Moderate but significant reductions in 125I-A-85380 binding in the hippocampus (Hip) and cerebellum (Cbm) were also observed following SAP immunolesioning. The results with 123IBVM confirm and extend previous work investigating the uptake of radioiodinated IBVM in this animal model. The results with 125I-A-85380 are unique and are in contrast with work performed in this animal model with other nAChR radioligands, indicating the favourable properties of this radioligand for molecular imaging. © 2006 Elsevier Ireland Ltd.
- ItemDetection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE.(Springer, 2010-12-01) Arlicot, N; Petit, E; Katsifis, A; Toutain, J; Divoux, D; Bodard, S; Roussel, S; Guilloteau, D; Bernaudin, M; Chalon, SPurpose: Neuroinflammation is involved in stroke pathophysiology and might be imaged using radioligands targeting the 18 kDa translocator protein (TSPO). Methods: We studied microglial reaction in brain areas remote from the primary lesion site in two rodent models of focal cerebral ischaemia (permanent or transient) using [125I]-CLINDE, a promising TSPO single photon emission computed tomography radioligand. Results: In a mouse model of permanent middle cerebral artery occlusion (MCAO), ex vivo autoradiographic studies demonstrated, besides in the ischaemic territory, accumulation of [125I]-CLINDE in the ipsilateral thalamus with a binding that progressed up to 3 weeks after MCAO. [125I]- CLINDE binding markedly decreased in animals preinjected with either unlabelled CLINDE or PK11195, while no change was observed with flumazenil pre-treatment, demonstrating TSPO specificity. In rats subjected to transient MCAO, [125I]-CLINDE binding in the ipsilateral thalamus and substantia nigra pars reticulata (SNr) was significantly higher than that in contralateral tissue. Moreover, [125I]-CLINDE binding in the thalamus and SNr was quantitatively correlated to the ischaemic volume assessed by MRI in the cortex and striatum, respectively. Conclusion: Clinical consequences of secondary neuronal degeneration in stroke might be better treated thanks to the discrimination of neuronal processes using in vivo molecular imaging and potent TSPO radioligands like CLINDE to guide therapeutic interventions. © 2010, Springer.
- ItemDetection of apoptotic cell death in the thymus of dexamethasone treated rats using [123I]Annexin V and in situ oligonucleotide ligation(Springer Nature, 2007-06-29) Zavitsanou, K; Nguyen, VH; Greguric, ID; Chapman, J; Ballantyne, P; Katsifis, AIn the present study we aimed to establish an animal model of dexamethasone (DEX)-induced apoptosis in the thymus of rats. The degree of apoptosis was determined in the same animals at 6 and 11 h after a single administration of DEX (5 mg/kg, ip) by (a) in vivo biodistribution of the uptake of [123I]Annexin V, a biomarker of the early stages of apoptosis; (b) in vitro evaluation of the apoptotic index (percentage of number of apoptotic cells versus total number of cells) in the form of DNA fragmentation, on tissue sections using in situ oligo ligation (ISOL). ISOL demonstrated a 62- and 90-fold increase of apoptotic index at 6 and 11 h after DEX administration respectively, in the outer part of the thymic lobule (cortex) and a 25- and 54-fold increases in the inner part of the thymic lobule (medulla) in the corresponding treatment groups. In the biodistribution study, [123I]Annexin V uptake was significantly increased in the thymus of rats 11 h after DEX administration (by 1.3- to 1.4-fold) and significantly decreased at the 6-h time point. We conclude that the specificity of the apoptotic signal provided by isotopic methods in vivo would always require confirmation by complementary in vitro techniques that verify the assessment of ongoing apoptosis accurately. © 2007 Springer Science+Business Media B.V.
- ItemDevelopment and validation of competition binding assays for affinity to the extracellular matrix receptors, αvβ3 and αIIbβ3 integrin(Elsevier B.V., 2012-04-01) Szabo, A; Howell, NR; Pellegrini, PA; Greguric, ID; Katsifis, AThe RGD (Arg-Gly-Asp) binding integrins αvβ3 and αIIbβ3 are integral components of various pathological and physiological processes, including tumor angiogenesis, osteoclast function, and thrombus formation. Because of this, there is interest in identifying novel compounds and proteins binding to these receptors as well as investigating the mechanism of these interactions. In this article, we describe the development and validation of competition binding assays for determining the affinity of test compounds to αvβ3 and αIIbβ3 integrin. Assays were successfully developed for each receptor, and the affinity of known compounds was comparable to published results. However, the inability of binding between αIIbβ3 integrin and the labeled echistatin protein ligand to reach equilibrium resulted in an assay that did not meet the assumptions of the competition binding model. Nevertheless, there was good agreement between this assay and known literature values, and intra- and interassay variability was acceptable. Binding by conformation-specific antibodies provided evidence that solid-phase bound αIIbβ3 receptor was in an activated conformation. This study also demonstrated that current models and methods for determining receptor affinity are simplistic and fail to account for common receptor–ligand interactions such as nondissociable interactions and varying receptor activation states. © 2012 by Elsevier Inc.
- ItemDevelopment of [18F]-Flumazenil-PET for localisation of the epileptogenic zone in patients with medically refractory focal epilepsy(Springer, 2010-10-11) Vivash, L; Grégoire, MC; Dedeurwaerdere, S; Bouilleret, V; Roselt, P; Lau, EW; Ware, RE; Binns, D; Katsifis, A; Hicks, RJ; Myers, DE; O'Brien, TJIntroduction: Studies of GABAA/central benzodiazepine receptor (GABAA/cBZR) distribution in the CNS using [11C]-flumazenil-PET (FMZ-PET) have enabled localisation of the epileptogenic zone (EZ) in patients with medically refractory epilepsy. [11C]-FMZ-PET images show a more restricted region of abnormality with increased sensitivity when compared with FDG-PET. However, use of [11C]-FMZ in routine clinical practice has been hindered by practical limitations of [11C]. The aim of the current study is to develop an [18F]-radiolabelled FMZ tracer with high specificity and improved imaging quality for EZ localisation in routine clinical practice. Methods: Preclinical studies: Presaturation, displacementand uptake PET scans were performed to define the kinetics of [18F]-FMZ binding in non-epileptic rats (n=8). Bmax (receptor density) and KD (binding affinity) were then quantified in the brains of epileptic (n=9; kainic acid-induced model of temporal lobe epilepsy) vs. non-epileptic control animals (n=10). Clinical study: 4 patient groups have been studied; healthy controls (n=20), patients with well-localised TLE from MRI scans (n=10), patients with lateralised TLE(n=7), and patients with other focal epilepsies (n=4). Each participant underwent a single 60 minute dynamic [18F]-FMZ-PET scan. Patients also underwent an FDG-PET scan. Blinded visual assessment of images to locate the EZ was performed. Parametric images of binding potential (BP) were generated. Datasets were processed using ROI analysis and SPM to assess differences in BP between patients and controls and localisation of the EZ in patients. Results:[18F]-FMZ was shown to be a suitable PET radiotracer for imaging GABAA/cBZR in vivo, with reversible and competitive binding and low non-specific binding. [18F]-FMZ-PET reliably detected decreased Bmax in the hippocampi of epilepticrats (left 16.3, right 15.9) compared with controls (left 20.9, right 19.8, p=0.022, p=0.049), with no change in KD (left 8.24 vs 8.46, p=0.82, right 7.43vs 8.07 p=0.56). There were no changes in whole brain Bmax or KD. To date the visual assessment of the clinical data has shown [18F]-FMZ-PET to have high sensitivity (100%) and positive predictive value (100%) for the EZ in patients, with a more restricted localisation of the EZ compared to FDG-PET. Quantitative analysis is ongoing. Conclusions: The pre-clinical studies have demonstrated that [18F]-FMZ-PET is a reliable radiotracer for quantification of CNSGABAA/cBZR expression in vivo. Preliminary analysis in our current clinical study indicates that [18F]-FMZ-PET also has excellent imaging characteristics in humans, and shows promise as a new clinical tool for localising the EZ in TLE patients. © 2020 Springer Nature Switzerland AG
- ItemDevelopment of PET and SPECT radiopharmaceuticals to study multi-drug resistance (MDR)(Australian Nuclear Science and Technology Organisation, 2002-04-29) Katsifis, A; Guilloteau, D; Dikic, B; Garrigos, M; Emond, P; Greguric, ID; Knott, RB; Marvel, S; Mattner, FCellular resistance or Multidrug Resistance (MDR) to cytotoxic agents is the major cause of treatment failure in many human cancers. P-glycoprotein (Pgp), a Mr 17,0000 transmembrane protein and Multi Resistance Protein (MRP) are two proteins that are over expressed and confer resistance to a large number of chemotherapeutic agents by enhancing their extracellular transport. P-glycoprotein is expressed at a relative high level in treated and untreated human malignant tumours, including renal, colonic, adrenal, hepatocellular carcinoma and a considerable percentage of breast carcinomas. 99mTc-Sestamibi, a lipophilic cationic complex is a transport substrate for Pgp. In clinical studies of human neoplasms it was found that tumour uptake and clearance of this tracer correlate with Pgp expression and may be used for the phenotypic assessment of MDR. However, new tracers with better substrate specificity for Pgp and other drug transporters would greatly assist in optimising chemotherapeutic treatment and improving patient management by predicting tumour response to therapy and to assist in the development of antagonists, which may reverse or halt MDR. The aim of this project is therefore to develop PET and SPECT radiopharmaceuticals with improved affinity and selectivity for Pgp and MRP for the clinical evaluation of MDR in cancer patients. To optimise cellular transport characteristics, a number of chemical families that have been found to be substrates of Pgp and other drug efflux pumps, will be investigated. In the first instance, a series of drugs based on the flavonol natural product, Quercetin will be developed, screened for MDR and radiolabelled with PET and SPECT isotopes. Quercetin and related flavonol derivatives have been selected for this project because of their moderate to good affinity for Pgp. With the assistance of molecular modeling and in vitro studies, structural modification will be undertaken to improve the specificity and affinity for PgP. This generic structure also offers the flexibility to prepare a wide range of molecules that are readily suitable for halogenation with either Iodine-123 or F-18 for radiopharmaceutical development. Finally these phenolic type of molecules based on Quercetin are relatively less toxic than equivalent drugs. In this proposal an extensive research program is required to develop specific drugs for the different efflux pumps present in the body, which represent multi drug resistance. A successful outcome is critically dependent on the initial synthesis of a large number of compounds for screening. The combined effort of the three institutions will boost resources significantly to a critical level required to competitively produce successful outcomes in the project. Optimisation studies on derivatives of these flavonols will be made in parallel with the assistance of in vitro studies by measuring the binding of compounds to the ATP sites of Pgp. An extensive in vitro screening program has been established in Paris, prior to radiolabelling and in vivo evaluation. Structural optimisation and attachment of radionuclides to promising molecular targets will be explored using molecular modelling. Initially computational chemistry using Sybyl will be undertaken to develop a pharmacophore and to assist with the incorporation of the radionuclide in the appropriate position. In vivo evaluation will be undertaken in specific animal models both at the University of Tours in France as well as at the Sydney Cancer Centre in Australia. PET functional imaging studies may be undertaken on successful candidates at the SHFJ in Orsay, France whilst SPECT imaging will be undertaken in both Tours and in Sydney. In addition to intellectual property and potential commercial product(s), specific PET or SPECT radiopharmaceuticals can provide valuable information on the assessment of MDR in cancer patients through functional, non-invasive, imaging and therefore make significant contributions to the understanding of MDR. Scientific and clinical researchers from both countries identified the use of PET and SPECT functional imaging of MDR as a priority area of research. Finally the clear benefits to cancer patients include choice of treatment, with minimisation of ineffective drug treatments at an earlier stage, hence reduced drug side effects and discomfort to patients and improvements in their quality of life. There are also reduced health costs by avoiding expensive and ineffective drug treatments,
- ItemDifferent radiolabelling methods alter the pharmacokinetic and biodistribution properties of Plasminogen Activator Inhibitor Type 2 (PAI-2) forms(Elsevier B.V., 2012-08-01) Ranson, M; Berghofer, PJ; Vine, KL; Greguric, ID; Shepherd, R; Katsifis, AIntroduction Tumour-associated urokinase plasminogen activator (uPA) is a critical marker of invasion and metastasis, and it is recognised as having strong prognostic relevance as well as being a therapeutic target. The specific uPA inhibitor plasminogen activator inhibitor type-2 (PAI-2, SerpinB2) specifically targets cell bound uPA and is internalised. Furthermore, preclinical studies have established the “proof-of-principle” of uPA-targeting by PAI-2-cytotoxin conjugates in human carcinoma models. However, these studies also suggest that PAI-2 is rapidly cleared via the renal system with low total dose reaching the tumour. In this study, a comparative single photon emission computed tomography (SPECT) and biodistribution (BD) analysis of different forms of PAI-2 labelled with the radioisotopes iodine-123 (123I) and technetium-99m (99mTc) was undertaken. Methods The pharmacokinetic (PK) properties and BD of wild-type, ΔCD-loop and PEGylated ΔCD-loop PAI-2 labelled with the commonly used diagnostic SPECT radioisotopes 99mTc or 123I were compared in mouse models of human prostate carcinoma. Whole body SPECT imaging was also performed. Results Both wild-type and the shorter but active ΔCD-loop form of PAI-2 123I-labelled indirectly via conjugation to free amine groups (termed 123I-Bn-PAI-2) exhibited low tumour uptake, rapid excretion and similar PK profiles. Preliminary studies with a short branched-chain PEGylated 123I-Bn-PAI-2 ΔCD-loop indicated an increase in blood retention time and tumour uptake. All 123I-Bn-labelled radiotracers were largely excreted through the kidneys. By comparison, both wild-type 123I-PAI-2 (labelled directly via tyrosine residues) and 99mTc-PAI-2 displayed different PK/BD patterns compared to 123I-Bn-PAI-2, suggesting greater liver based catabolism and thus slower elimination. SPECT imaging mimicked the BD results of all radiotracers. © 2020 Elsevier B.V. Conclusion The different labelling methods gave distinct PAI-2 BD and tumour uptake profiles, with radioiodination resulting in the best non-tumour organ clearance profiles. Preliminary analyses with short branched-chain PEGylated 123I-Bn-PAI-2 ΔCD-loop suggest that further investigations with other PEGylation reagents are required to optimise this approach for tumour imaging. These findings impact on the use of PAI-2 for drug delivery and/or diagnostic development. © 2012 Published by Elsevier Inc.
- ItemDifferential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents?(International Journal of Neuropsychopharmacology., 2011-05-01) Karanges, E; Li, KM; Motbey, CP; Callaghan, PD; Katsifis, A; McGregor, ISSelective serotonin reuptake inhibitor use is associated with increased risk of suicidal ideation in adolescent humans, yet the neuropharmacological basis of this phenomenon is unknown. Consequently, we examined the behavioural and neurochemical effects of chronic paroxetine (PRX) treatment in adult and adolescent rats. Rats received PRX in their drinking water (target dose 10 mg/kg) for 22 d, during which time they were assessed for depression- and anxiety-like behaviours. Subsequent ex-vivo analyses examined serum PRX concentrations, striatal neurotransmitter content, and regional serotonin and dopamine transporter (SERT, DAT) binding density. After 11–12 d treatment, PRX-treated adolescent rats showed a significant inhibition of social interaction while adults were unaffected. After 19–20 d treatment, adolescents failed to show an antidepressant-like effect of PRX treatment on the forced swim test (FST), while PRX-treated adults showed a typical decrease in immobility and increase in swimming. Two PRX-treated adolescents died unexpectedly after the FST suggesting a compromised response to physical stress. Despite their greater apparent adverse reaction to the drug, adolescents had significantly lower plasma PRX than adults at day 22 of treatment. Chronic PRX treatment had similar effects in adults and adolescents on striatal 5-HT (unchanged relative to controls) and 5-HIAA levels (decreased), while markers of dopaminergic function (DOPAC, HVA, DA turnover) were increased in adults only. SERT density was up-regulated in the amygdala in PRX-treated adolescents only while DAT density in the nucleus accumbens was down-regulated only in PRX-treated adults. These data suggest that the immature rat brain responds differently to PRX and that this might be of use in modelling the atypical response of human adolescents to antidepressants. The age-specific PRX-induced changes in dopaminergic markers and SERT and DAT binding provide clues as to the neural mechanisms underlying adverse PRX effects in adolescent humans. © 2011, Cambridge University Press
- ItemDiscovery of [F-18]N-(2-(Diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance(American Chemical Society, 2009-09-10) Greguric, ID; Taylor, SR; Denoyer, D; Ballantyne, P; Berghofer, PJ; Roselt, P; Pham, TQ; Mattner, F; Bourdier, T; Neels, OC; Dorow, DS; Loc'h, C; Hicks, RJ; Katsifis, AThe high melanoma uptake and rapid body clearance displayed by our series of [123I]iodonicotinamides prompted the development of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide ([18F]2), a novel radiotracer for PET melanoma imaging. Significantly, unlike fluorobenzoates, [18F]fluorine incorporation on the nicotinamide ring is one step, facile, and high yielding. [18F]2 displayed high tumor uptake, rapid body clearance via predominantly renal excretion, and is currently being evaluated in preclinical studies for progression into clinical trials to assess the responsiveness of therapeutic agents. © 2009, American Chemical Society
- ItemEvaluation of [I-123]-CLINDE as a potent SPECT radiotracer to assess the degree of astroglia activation in cuprizone-induced neuroinflammation(Springer, 2011-08-01) Mattner, F; Bandin, DL; Staykova, M; Berghofer, PJ; Grégoire, MC; Ballantyne, P; Quinlivan, M; Fordham, S; Pham, TQ; Willenborg, DO; Katsifis, AThe purpose of this study was to assess the feasibility and sensitivity of the high-affinity translocator protein (TSPO) ligand [123I]-CLINDE in imaging TSPO changes in vivo and characterise and compare astroglial and TSPO changes in the cuprizone model of demyelination and remyelination in C57BL/6 mice. Methods C57BL/6 mice were fed with cuprizone for 4 weeks to induce demyelination followed by 2–4 weeks of standard diet (remyelination). Groups of mice were followed by in vivo single photon emission computed tomography (SPECT)/CT imaging using [123I]-CLINDE and uptake correlated with biodistribution, autoradiography, immunohistochemistry, immunofluorescence and real-time polymerase chain reaction (RT-PCR). Results The uptake of [123I]-CLINDE in the brain as measured by SPECT imaging over the course of treatment reflects the extent of the physiological response, with significant increases observed during demyelination followed by a decrease in uptake during remyelination. This was confirmed by autoradiography and biodistribution studies. A positive correlation between TSPO expression and astrogliosis was found and both activated astrocytes and microglial cells expressed TSPO. [123I]-CLINDE uptake reflects astrogliosis in brain structures such as corpus callosum, caudate putamen, medium septum and olfactory tubercle as confirmed by both in vitro and in vivo results. Conclusion The dynamics in the cuprizone-induced astroglial and TSPO changes, observed by SPECT imaging, were confirmed by immunofluorescence, RT-PCR and autoradiography. The highly specific TSPO radioiodinated ligand CLINDE can be used as an in vivo marker for early detection and monitoring of a variety of neuropathological conditions using noninvasive brain imaging techniques. © 2011, Springer.
- ItemEvaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation(Springer Nature, 2008-06-07) Arlicot, N; Katsifis, A; Garreau, L; Mattner, F; Vergote, J; Duval, S; Bodard, S; Guilloteau, D; Chalon, SThe translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl) -imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [125I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([3H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. In the control group, [125I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p<0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation. © 2008 Springer International Publishing
- ItemEvaluation of the PBR ligand [123I]CLINDE in an animal model of experimental autoimmune encephalomyelitis(Australasian Quaternary Association, 2008-05-01) Mattner, F; Linares, D; Staykova, M; Grégoire, MC; Pham, TQ; Bourdier, T; Quinlivan, M; Callaghan, PD; Willenborg, DO; Katsifis, AObjectives: The aim of this study was to evaluate the Peripheral Benzodiazepine Receptor (PBR) radioligand [123I]CLINDE in the rat inflammatory disease model of Experimental Autoimmune Encephalomyelitis (EAE). Methods: EAE was induced with blast cells collected from spleen and lymph nodes of Lewis rats induced with myelin basic protein and complete Freund's adjuvant. Biodistribution with [123I]CLINDE was undertaken on EAE rats exhibiting different disease severity and compared to controls.The relationship between inflammatory lesions and tracer uptake was investigated using ex vivo autoradiography and immunohistochemistry. Results: Disease severity was confirmed by histopathology in spinal cord. Results indicate enhanced uptake of [123I]CLINDE in all animals induced with EAE compared to controls. This uptake reflected the ascending nature of the inflammatory lesions ie. uptake in the lumbar spinal cord > thoracic cord > cervical cord > medulla > cerebellum. Uptake of [123I]CLINDE in the lumbar and thoracic cord correlated with disease severity. A 2 and 3 fold enhancement in PBR expression was observed in the brain and spinal cord of animals with a clinical score of 3 compared to controls. Regional [123I]CLINDE uptake closely correlated with localisation of PBR, shown using autoradiography and immunohistochemisty. Conclusions: These results demonstrate the ability of [123I]CLINDE to measure in vivo changes of PBR density according to area of involvement and the severity of disease suggesting it as a potential SPECT tracer for the study of inflammation and multiple sclerosis. © 2022 Journal of Nuclear Medicine