Browsing by Author "Kain, CL"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDetermining flow patterns and emplacement dynamics from tsunami deposits with no visible sedimentary structure(John Wiley and Sons, 2016-09-16) Kain, CL; Wassmer, P; Goff, JR; Chagué-Goff, C; Gomez, C; Hart, DE; Fierro, D; Jacobsen, GE; Zawadzki, AIn the absence of eyewitness reports or clear sedimentary structures, it can be difficult to interpret tsunami deposits or reconstruct tsunami inundation patterns. The emplacement dynamics of two historical tsunami deposits were investigated at seven transects in Okains Bay, New Zealand, using a combined geospatial, geomagnetic and sedimentological approach. The tsunami deposits are present as layers of sand and silt intercalated between soils and become finer and thinner with distance inland. The deposits are attributed to the 1960 and possibly the 1868 tsunamis, based on radiometric dating and correlation with historical records. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) and particle size were used to reconstruct the evolution of flow dynamics laterally and vertically. A combination of statistical methods, including spatial autocorrelation testing, Spearman's rank order correlation, Principal Component Analysis (PCA) and K-means cluster analysis, was applied to examine relationships between MF parameters and sediment texture, and infer depositional hydrodynamics. Flow patterns deduced from MF show the estuary channel acted as a conduit for inundation, with flow commonly aligned sub-perpendicular to the estuary bed. MF and sediment data suggest deposition occurred from settling during laminar flow. Evidence of both uprush and backwash deposition, as well as wave reflection from infrastructure, was found. Statistical analysis of data showed significant relationships between grain size parameters and MF parameters associated with flow speed and magnetic fabric type. PCA and cluster analysis differentiated samples into two primary hydrodynamic groups: (1) samples deposited from laminar flow; and (2) samples deposited close to the limit of inundation, which includes samples deposited further inland, those affected by flow convergence, and those in the upper part of tsunami deposits. This approach has potential as a tool for reconstructing hydrodynamic conditions for palaeotsunamis and by combining spatial and statistical analyses, large-scale investigations can be more easily performed. Copyright © 2016 John Wiley & Sons, Ltd.
- ItemReconstructing flow patterns from tsunami deposits with no visible sedimentary structure(American Geophysical Union, 2014-01-01) Kain, CL; Chagué-Goff, C; Goff, JR; Wassmer, P; Gomez, CA; Hart, DEHigh energy coastal events, such as tsunamis, commonly leave sediment deposits in the landscape that may be preserved in the geological record. A set of anomalous sand and silt layers intercalated between soil units was identified alongside an estuary in Okains Bay, Banks Peninsula, New Zealand. Okains Bay, comprised of a coastal plain of Holocene progradational dune ridges, was flooded by tsunamis in 1868 and 1960. Previous research has assessed the relationship between tsunami flow patterns and sediment deposits for recent events, and we aim to extend this application to older deposits where flow patterns were not recorded and sedimentary structures are not visually apparent. A multi-proxy approach was used to investigate the sediment deposits at twelve sites along a 2 km length of the estuary margin and map inundation patterns. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) were used to determine the flow direction during deposition, alongside stratigraphy and particle size analyses to assess wave energy. Flow direction results were overlaid on a digital elevation model of the study site to interpret flow patterns. Deposits became thinner and particle size decreased with distance from the coast, indicating waning flow energy with distance inland. MF results indicate that inundation occurred via the estuary channel, with primary flow directions oriented perpendicular or sub-perpendicular to the channel at each site. On a smaller scale, results showed evidence of current reversal at some sites, with flow directed alternately away from and towards the estuary channel. This is consistent with uprush and backwash patterns observed in tsunami wave sequences. Topographic control of flow patterns is also evident from the data. This research demonstrates a method for investigating older, structurally-degraded deposits and has implications for the reconstruction of paleotsunami inundation from their sedimentary deposits. © AGU
- ItemStatistical analysis of ITRAX XRF data to identify marine incursion, sediment source, and saltwater leaching in tsunami deposits(American Geophysical Union, 2015-12-16) Kain, CL; Chagué-Goff, C; Goff, JR; Gadd, PSGeochemical investigation of fine-grained tsunami sediments has found that a characteristic salinity signature can be commonly found in tsunami deposits and underlying soils following an event. We extend this method to assess historic and paleotsunami deposits and investigate a wider range of particle sizes, with the aim of identifying whether salinity signatures are present and determining the source material of the deposits. Geochemical and mineralogical investigation of seven short cores was undertaken at four sites in New Zealand, where historic and/or palaeotsunami deposits were present as sand, silt or gravel layers intercalated between soils. Geochemical signatures were measured using a high-resolution ITRAX X-ray fluorescence (XRF) core scanner and results were analysed using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). We were able to explore the signatures of historical events, verify that prehistoric deposits were laid down by tsunamis, and compare these sediments with the background depositional environment. A t-test of means was applied for salinity marker elements (S, Cl, Br) in the soils immediately above and below tsunami sand layers, to test for evidence of saltwater leaching. The dominant mineralogy of the sediments was determined using portable X-ray diffraction and the data used to consider source material and interpret the corresponding XRF data. Geochemical signatures were found to be site specific, depending primarily on the composition of the material. PCA and HCA results clearly distinguished the signature of the tsunami deposits from the background material at each individual site and were able to confirm or deny palaeodeposits as tsunami-related, by comparison with the signatures of known events in the same core or nearby. © 2014 American Geophysical Union.