Browsing by Author "Kabra, S"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAuthor Correction: Neutron diffraction analysis of stress and strain partitioning in a two-phase microstructure with parallel-aligned phases(Springer Nature, 2020-10-07) Huang, QL; Shi, R; Muránsky, O; Beladi, H; Kabra, S; Schimpf, C; Volkova, OS; Biermann, H; Mola, JThe original version of this Article contained an error in Affiliation 5, which was incorrectly given as ‘Spallation Neutron Source, The Rutherford Appleton Laboratory, Oxfordshire, UK’. The correct affiliation is listed below: ISIS Neutron and Muon Facility, The Rutherford Appleton Laboratory, Oxfordshire, UK. This error has now been corrected in the HTML and PDF versions of the Article. © 2020 The Author(s)
- ItemDefect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction(American Institute Physics, 2013-02-13) Kabra, S; Yan, K; Carr, DG; Harrison, RP; Dippenaar, RJ; Reid, M; Liss, KDAfter alpha+beta-zirconium has fully transformed into beta-phase upon heating, the intensities of all beta-Zr Bragg reflections decrease simultaneously as a function of time. It is shown that this effect represents a transition from the kinematic to the dynamic theory of diffraction due to the ever increasing crystal perfection driven by thermal recovery of the system. The best fitting coherent crystallite size of 30 mu m and other microstructural features are verified by in situ laser scanning confocal microscopy. This effect of primary extinction in neutron diffraction has been employed to further investigate the crystal perfection kinetics. Upon further heating, crystal recovery is identified as a process of dislocation annihilation, suffering from lattice friction. Upon cooling, precipitating alpha-Zr induces strain into the perfect beta-crystallites, re-establishing the kinematic diffraction intensities. An Avrami analysis leads to the estimations of nucleation time, consumption of nucleation sites and lower-dimensional growth. Such technique bears great value for further investigation on all metal systems annealed close to the melting temperature. © 2013, American Institute of Physics.
- ItemIn-situ characterization of lattice structure evolution during phase transformation of Zr-2.5Nb(Wiley-Blackwell, 2011-09-01) Yan, K; Carr, DG; Kabra, S; Reid, M; Studer, AJ; Harrison, RP; Dippenaar, RJ; Liss, KDThe alpha-beta phase transformation behavior of Zr-2.5Nb (in mass%) has been characterized in real time during an in situ neutron diffraction experiment. The Zr-2.5Nb material in the current study consists, at room temperature, of alpha-Zr phase (hcp) and two beta phases (bcc), a Nb rich beta-Nb phase and retained, Zr rich, beta-Zr(Nb) phase. It is suggested that this is related to a quench off the equilibrium solubility of Nb atoms in the Zr bcc unit cells. Vegard's law combined with thermal expansion is applied to calculate the composition of the beta-phase, which is compared with the phase diagram, revealing the system's kinetic behavior for approaching equilibrium. © 2011, Wiley-Blackwell.
- ItemMartensitic phase transformation and deformation behavior of Fe–Mn–C–Al twinning-induced plasticity steel during high-pressure torsion(Wiley Online Library, 2014-02-05) Yan, K; Bhattacharyya, D; Lian, Q; Kabra, S; Kawasaki, M; Carr, DG; Callaghan, MD; Avdeev, M; Li, HJ; Wang, Y; Liao, XZ; Langdon, TG; Liss, KD; Dippenaar, RJThe transformation between the face centered cubic austenitic and hexagonal close-packed martensitic phases during high-pressure torsion processing was observed in a Fe–Mn–C–Al twinning-induced plasticity steel. This phase transformation was not found in the same material processed by unidirectional compressive and tensile deformation. Initiated by the high-pressure loading, the martensite phase initially increased with torsional strain but diminished subsequently. Texture evolution of the austenitic phase was compared with the ideal texture distribution of face-centered cubic materials after shear deformation.© 2014, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- ItemMechanical properties of tungsten copper composites: direct measurement by neutron diffraction(Australian Institute of Physics, 2014-02-04) Mignone, PJ; Finlayson, TR; Kabra, S; Zhang, SY; Franks, GV; Riley, DPThe composite W-10 wt%Cu (19.35% by volume, assuming negligible porosity) has been studied using the ENGIN-X beamline at the ISIS pulsed neutron source at the Rutherford Appleton Laboratory. An as-machined, compression sample was initially measured in order to check for the presence of residual stresses in the composite, using a mixed powder sample of the same elemental weight fractions as the “zero stress” comparison. Then a series of mechanical tests were carried out on the composite for applied compressive loads up to 250 MPa at both room temperature and 100ºC and compared with similar tests carried out on pure tungsten and copper samples. Residual stress values of -280 MPa (for the tungsten matrix) and 480 MPa (for the copper particulate phase) were measured for the as-machined sample. This is a surprising result, given that the yield stress for copper is typically less than 100 MPa but is not inconsistent with residual stresses reported in the literature for W-Cu composites. The mechanical properties for the composite have also been determined from the results of these in-situ, mechanical tests and compared with finite element calculations based on microstructural models for the composite material.
- ItemNeutron diffraction analysis of stress and strain partitioning in a two-phase microstructure with parallel-aligned phases(Springer Nature, 2020-08-11) Huang, QL; Shi, R; Muránsky, O; Beladi, H; Kabra, S; Schimpf, C; Volkova, OS; Biermann, H; Mola, JBy time-of-flight (TOF) neutron diffraction experiments, the influence of segregation-induced microstructure bands of austenite (γ) and martensite (α′ ) phases on the partitioning of stress and strain between these phases was investigated. Initially, tensile specimens of a Co-added stainless steel were heat treated by quenching and partitioning (Q&P) processing. Tensile specimens were subsequently loaded at 350 °C parallel to the length of the bands within the apparent elastic limit of the phase mixture. Lattice parameters in both axial and transverse directions were simultaneously measured for both phases. The observation of a lattice expansion for the γ phase in the transverse direction indicated a constraint on the free transverse straining of γ arising from the banded microstructure. The lateral contraction of α′ imposed an interphase tensile microstress in the transverse direction of the γ phase. The multiaxial stress state developed in the γ phase resulted in a large deviation from the level of plastic strain expected for uniaxial loading of single phase γ. Since segregation-induced banded microstructures commonly occur in many engineering alloys, the analysis of stress and strain partitioning with the present Q&P steel can be used to interpret the observations made for further engineering alloys with two-phase microstructures. © 2020 The Author(s)
- ItemOn low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography(Elsevier, 2014-01-01) Rakha, K; Beladi, H; Timokhina, I; Kabra, S; Liss, KD; Hodgson, PIn-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenisation, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was then used to confirm that, despite the presence of 1.5 mass% Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels. © 2013, Elsevier B.V.
- ItemPhase transition and ordering behavior of ternary Ti-Al-Mo alloys using in-situ neutron diffraction(HANSER eLibrary, 2011-06-01) Kabra, S; Yan, K; Mayer, S; Schmoelzer, T; Reid, M; Dippenaar, RJ; Clemens, H; Liss, KDNeutron diffraction has been used for in-situ. investigations to elucidate the phase transformation behavior of two Mo-containing TiAl alloys with compositions of Ti-44Al-3Mo and Ti-44Al-7Mo (in at.%). Five different phases are present in these alloys. These include three ordered phases at room temperature, namely alpha(2), beta(0) and gamma and two disordered phases, alpha and beta, which occur at higher temperatures. The sequence of the three phase transformations in each alloy has been determined. The phase transformation and disordering/ordering temperatures were determined on heating and cooling from the diffracted peak intensities. The neutron experiments are particularly sensitive to the order disorder transitions in TiAl alloys, which are compared with the overall phase fractions obtained from previous high energy X-ray diffraction. Hysteresis and undercooling effects are observed for the various phase transformations and depend on the nature of atomic rearrangements. © 2011 Carl Hanser Verlag GmbH & Co. KG