Browsing by Author "Kabir, II"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemStructure evolution of nanodiamond aggregates: a SANS and USANS study(International Union of Crystallography, 2022-02-21) Kabir, II; Osborne, JC; Lu, W; Mata, JP; Rehm, C; Yeoh, GH; Erez, TUltra-small-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) measurements, covering length scales from micrometres to nanometres, were made to investigate the structure of nanodiamonds (NDs) and their suspensions. These nanodiamonds were produced by two different techniques, namely by the detonation method and by the laser ablation of a carbon-hydrocarbon mixture. The (U)SANS results indicated the presence of structures four orders of magnitude larger than the dimensions of a single ND particle, consisting of aggregations of ND particles. This aggregation of the ND particles was studied by employing the contrast variation technique. Two different solvents, namely H2O and dimethyl sulfoxide (and their deuterated counterparts), were used to understand the role of hydrogen in the shape and size of the aggregates. The analysis of experimental data from SANS measurements also reveals the ND particles to have an ellipsoidal structure. Using a defined shape model and the SANS contrast variation technique, it was possible to characterize the non-diamond outer shell of the particles and determine the outer layer thickness. This clarification of the structure of the NDs will allow better preparation of suspensions/samples for various applications. Understanding the structure of NDs at multiple length scales also provides crucial knowledge of particle-particle interaction and its effect on the aggregation structures. © International Union of Crystallography - Open Access CC BY licence.
- ItemStudy of structure morphology and layer thickness of Ti3C2 MXene with small-angle neutron scattering (SANS)(Elsevier B. V., 2021-07-05) Yuen, ACY; Chen, TBY; Lin, B; Yang, W; Kabir, II; Cordeiro, IMDC; Whitten, AE; Mata, JP; Yu, B; Lu, HD; Yeoh, GHMXene is a class of 2D materials exfoliated from ternary carbide and nitride ceramics. During synthesis, etching and delamination conditions affect the quality, overall crystallinity, defects and surface functionalization of MXene flakes. In this article, the morphological structure of MXene (Ti3C2) nanosheets under temperature between 20 °C and 60 °C were investigated with the application of Small-Angle Neutron Scattering (SANS) combined with several complementary techniques, such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The SANS analysis enabled structural information to be obtained about the Ti3C2 nanosheets, which consists of layers of transition metal carbides in a multilayer lamella morphology. The results showed that a single Ti3C2 layer is approximately 11.4 – 11.8 Å (1.14 – 1.18 nm) in thickness with a 20.3 – 21.5 Å (2.03 – 2.15 nm) interstacking layer gaps. This results in a total thickness of approximately 32 Å (3.2 nm), which was consistent with the model-dependent lamella model analysis. Furthermore, the thickness of the Ti3C2 layer increased by approximately ~2 Å (0.2 nm) when the temperature increased from 20 - 40 to 50 - 60 °C. © 2021 The Author(s). Published by Elsevier B.V.