Browsing by Author "Johnson, GR"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMarine productivity and synoptic meteorology drive summer-time variability in Southern Ocean aerosols(Copernicus Publications, 2020-07-10) Alroe, J; Cravigan, LT; Miljevic, B; Johnson, GR; Selleck, PW; Humphries, RS; Keywood, MD; Chambers, SD; Williams, AG; Ristovski, ZDCloud–radiation interactions over the Southern Ocean are not well constrained in climate models, in part due to uncertainties in the sources, concentrations, and cloud-forming potential of aerosol in this region. To date, most studies in this region have reported measurements from fixed terrestrial stations or a limited set of instrumentation and often present findings as broad seasonal or latitudinal trends. Here, we present an extensive set of aerosol and meteorological observations obtained during an austral summer cruise across the full width of the Southern Ocean south of Australia. Three episodes of continental-influenced air masses were identified, including an apparent transition between the Ferrel atmospheric cell and the polar cell at approximately 64∘ S, and accompanied by the highest median cloud condensation nuclei (CCN) concentrations, at 252 cm−3. During the other two episodes, synoptic-scale weather patterns diverted air masses across distances greater than 1000 km from the Australian and Antarctic coastlines, respectively, indicating that a large proportion of the Southern Ocean may be periodically influenced by continental air masses. In all three cases, a highly cloud-active accumulation mode dominated the size distribution, with up to 93 % of the total number concentration activating as CCN. Frequent cyclonic weather conditions were observed at high latitudes and the associated strong wind speeds led to predictions of high concentrations of sea spray aerosol. However, these modelled concentrations were not achieved due to increased aerosol scavenging rates from precipitation and convective transport into the free troposphere, which decoupled the air mass from the sea spray flux at the ocean surface. CCN concentrations were more strongly impacted by high concentrations of large-diameter Aitken mode aerosol in air masses which passed over regions of elevated marine biological productivity, potentially contributing up to 56 % of the cloud condensation nuclei concentration. Weather systems were vital for aerosol growth in biologically influenced air masses and in their absence ultrafine aerosol diameters were less than 30 nm. These results demonstrate that air mass meteorological history must be considered when modelling sea spray concentrations and highlight the potential importance of sub-grid-scale variability when modelling atmospheric conditions in the remote Southern Ocean. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
- ItemRelating urban airborne particle concentrations to shipping using carbon based elemental emission ratios(Elsevier, 2014-10) Johnson, GR; Juwono, AM; Friend, AJ; Cheung, HC; Stelcer, E; Cohen, DD; Ayoko, GA; Morawska, LThis study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulphur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng m−3 (87%) higher than the average for all wind directions and 0.83 ng m−3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions. © 2014, Elsevier Ltd.