Browsing by Author "Jiang, N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemParticulate pollution in the Sydney region: source diagnostics and synoptic controls(Gigvvy Science, 2016-04-04) Crawford, J; Griffiths, AD; Cohen, DD; Jiang, N; Stelcer, EAirborne particulate matter (PM2.5) was sampled at Richmond and Liverpool, located in the Sydney Basin, Australia, and ion beam analysis was used to obtain the elemental composition. Using self-organising maps to classify synoptic weather systems, it was found that high PM2.5 concentrations were associated with high pressure systems located to the east of the sampling sites. The highest median sulfur was associated with weak synoptic conditions and high soil dust days were more often associated with frontal systems. To investigate the effect of local flows in the Sydney Basin, the Weather Research and Forecasting model (WRF) was used to generate meteorological data of 12 km resolution. A comparison was made between back trajectories generated using the higher-resolution WRF data, the 0.5° by 0.5° Climate Forecast System data and the 1° by 1° Global Data Assimilation System data. It was found that for high soil dust days, there were small differences between the different back trajectories. However, under weak synoptic conditions (high sulfur days), the back trajectories generated from higher resolution data showed larger variations over a 24 hr period. This was attributed to the meandering of local winds and seabreezes. Lower altitude back trajectories, generated from low resolution data, passed more often over the power stations located on the western side of the Great Dividing Range (while the sampling sites are on the east). This demonstrates the need for higher resolution meteorological data for generating low altitude back trajectories when the source and receptor are separated by hilly terrain. In estimating the number of high sulfur days for which a power station was crossed, there was up to 20% difference at Liverpool and up to 10% difference at Richmond, between back trajectories starting at different altitudes and generated from meteorological data of three different resolutions. © Taiwan Association for Aerosol Research
- ItemVisualising the relationships between synoptic circulation type and air quality in Sydney, a subtropical coastal-basin environment(Wiley Online Library, 2016-05-20) Jiang, N; Scorgie, Y; Hart, M; Riley, ML; Crawford, J; Beggs, PJ; Edwards, GC; Chang, L; Salter, D; Virgilo, GDOzone and particle pollution are of concern for the Sydney basin, in particular during warm months (November to March) when pollution levels can exceed national standards. Previous studies on the relationship between synoptic circulation and air quality focused on high pollution days or aggregated air quality conditions over the region as a whole. This study provides both temporal and spatial analyses of the synoptic processes affecting warm-month ozone and particle pollution in Sydney. A warm-month synoptic catalogue was developed by applying the self-organising map method to the NCEP/NCAR geopotential height reanalysis for south-east Australia. The catalogue was linked to mesoscale meteorological features such as drainage flows and sea breezes, and subsequently to the spatial variability in air quality across the Sydney basin. The typical synoptic types commonly associated with high or low ozone and PM10 levels, as well as variations in visibility, were identified. The results suggest that, due to Sydney's subtropical coastal-basin environment, the interaction between meso- and synoptic-scale features determine local air quality conditions in the region, rather than the synoptic conditions alone. Emissions from bushfires appear to have considerable impacts on the synoptic modulation to visibility and PM10 levels, with such impacts tending to be more at a local scale. In contrast, no comparable impacts were found for ozone pollution. For ozone and visibility, the probability for an exceedance day under some synoptic types varied considerably over time, implying that there might have been a shift in the role of synoptic modulation to local air quality associated with changes in air emissions profiles. This study provides a leap in our understanding of the relationship between synoptic circulation and air quality in a coastal-basin environment. The results are useful for improving air quality forecasting in Sydney, with the methodology developed readily applicable to similar regions elsewhere. © 2016, Royal Meteorological Society.