Browsing by Author "James, JA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEvaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange(Elsevier Science BV., 2013-07-01) Muránsky, O; Holden, TM; Kirstein, O; James, JA; Paradowska, AM; Edwards, LThe dual-phase alloy Zr2.5Nb alloy is an important nuclear material, because of its use in current and possible use in future nuclear reactors. It is, however, well-known that Zr2.5Nb weldments can fail through a time-dependent mechanism called delayed hydride cracking which is typically driven by the presence of tensile residual stresses. With a view to understanding the development of residual stresses associated with Zr2.5Nb welds the current study focuses on the evaluation of the residual stresses in a mock-up of a reactor beam tube flange made from Zr2.5Nb0.9Hf. The present results suggests that, like ferritic welds which undergo a solid-state phase transformation upon welding, Zr2.5Nb0.9Hf welds also develop high tensile residual stresses in the heat-affected zone whereas the stresses closer to the weld tip are reduced by the effects of the beta -> alpha solid-state phase transformation. © 2013, Elsevier Ltd.
- ItemModern and historical engineering components investigated by neutron diffractionon ENGIN-X(Japan Society of Mechanical Engineers, 2012-06-29) Paradowska, AM; Tremsin, A; Kelleher, JF; Zhang, SY; Paddea, S; Burca, G; James, JA; Ahmed, R; Faisal, NH; Festa, G; Andreani, C; Civita, F; Bouchard, PJ; Krockelman, W; Fitzpatrick, ME; Grazzi, FThe ENGIN-X beamline is mainly used to determine residual strains/stresses deep within the interior of bulk engineering components. It is mainly used by scientists and engineers for the development of modern engineering processes and structural integrity investigations. ENGIN-X diffraction and transmission mode can be a very useful tool to measure strain, phase transitions, texture and material composition in spatial resolution in historical or archaeological artifacts and modern materials. The complexity of the shapes and sizes of the samples measured on ENGIN-X varies significantly between experiments, and this required the development of better planning, simulation and control software, SScanSS. In this paper an overview of recent developments in strain scanning on ENGIN-X and a highlight of current scientific research are presented. © 2012 The Japan Society of Mechanical Engineers