Browsing by Author "Innis, PC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFew-layer hexagonal boron nitride / 3D printable polyurethane composite for neutron radiation shielding applications(Elsevier, 2023-03) Knott, JC; Khakbaz, HS; Allen, J; Wu, L; Mole, RA; Baldwin, C; Nelson, A; Sokolova, AV; Beirne, S; Innis, PC; Frost, DG; Cortie, DL; Rule, KCFunctional polymer composites can confer a range of benefits in practical applications that go beyond the individual properties of the constituent materials. Here we investigate and characterize the neutron absorbing capability of few-layer hexagonal boron nitride (h-BN) in composite with a 3D-printable thermoplastic polyurethane, and present experiment and simulation data to understand the processes and mechanisms in play. Shielding and protection from neutrons can be necessary in a range of terrestrial and space-based applications. The neutron absorption of composites with varying fractions of h-BN is strongly energy-dependent in the low-energy regime below 10 meV, and a composite containing 20 wt% h-BN shows a 70-fold reduction in the transmission relative to pure polyurethane at 0.5 meV neutron energies. This is attributed to the strong neutron capture cross-section of the naturally abundant boron-10 isotope, with energy-dependent measurements up to 100 meV confirming this point. Using inelastic neutron spectroscopy, we identify additional effects from the hydrogen in the polyurethane which both scatters diffusively and moderates neutrons inelastically via its phonon spectrum, enhancing the neutron absorption characteristics. Two models – based on analytic functions and Monte Carlo numerical techniques – are presented, and show excellent agreement with experiment results. The 3D-printability of the composite is demonstrated, and the opportunities and challenges for deploying these composites in neutron radiation protection applications are discussed. © 2022 Published by Elsevier Ltd.
- ItemInterplay between thermal and magnetic properties of polymer nanocomposites with superparamagnetic Fe3O4 nanoparticles(Elsevier, 2023-08-01) Rezoanur Rahman, M; Bake, A; Jumlat Ahmed, AI; Islam, SMKN; Wu, L; Khakbaz, HS; FitzGerald, S; Chalifour, A; Livesey, KL; Knott, JC; Innis, PC; Beirne, S; Cortie, DLMagnetic nanoparticles embedded in polymer matrices have excellent potential for multifunctional applications like magnetic remote heating, controlled drug delivery, hyperthermia, and thermally functionalized biomedical devices. A solvent-based processing method was developed to produce magnetic composites consisting of magnetite (Fe3O4) superparamagnetic nanoparticles embedded in a biomedical-grade polyurethane (ChronoFlex® C). The particles had a log-normal size distribution spanning from 4−16 nm, with a mean-size of 9.5 ± 2 nm. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy with elemental mapping were used to assess the phase purity, surface morphology, particle size, and homogeneity of the resulting nanocomposite. The magnetic properties of composites with 7–13 wt% of Fe3O4 were studied between 5 and 300 K using vibrating sample magnetometry. Room temperature magnetic attraction was observed, with a saturation magnetization of up to 5 emu/g and a low coercive field (Hc < 50 Oe), where the non-zero coercive field was attributed to a small fraction of larger particles that are ferromagnetic at room temperature. Field-cooled and zero-field-cooled magnetometry data were fitted to a numerical model to determine the superparamagnetic mean blocking temperature (TB = 90 K) of the embedded magnetite particles, and an effective magnetic anisotropy of 6×105 erg/cm3. Using an AC magnetic field operating at 85 kHz, we demonstrate that remote heating of the base polyurethane material is greatly enhanced by compositing with Fe3O4 nanoparticles, leading to temperatures up to 45 °C within 18 min for composites submerged in water. This work demonstrates the fundamental principles of a custom-designed thermomagnetic polymer composite that could be used in applications, including medical and heat management. © 2023 Published by Elsevier B.V.