Browsing by Author "Hynson, RMG"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNovel structure of an antikinase and its inhibitor(Elsevier, 2011-01-07) Jacques, DA; Langley, DB; Hynson, RMG; Whitten, AE; Kwan, AH; Guss, JM; Trewhella, JIn Bacillus subtilis, the KipI protein is a regulator of the phosphorelay governing the onset of sporulation. KipI binds the relevant sensor histidine kinase, KinA, and inhibits the autophosphorylation reaction. Gene homologues of kipI are found almost ubiquitously throughout the bacterial kingdom and are usually located adjacent to, and often fused with, kipA gene homologues. In B. subtilis, the KipA protein inhibits the antikinase activity of KipI thereby permitting sporulation. We have used a combination of biophysical techniques in order to understand the domain structure and shape of the KipI–KipA complex and probe the nature of the interaction. We also have solved the crystal structure of TTHA0988, a Thermus thermophilus protein of unknown function that is homologous to a KipI–KipA fusion. This structure, which is the first to be described for this class of proteins, provides unique insight into the nature of the KipI–KipA complex. The structure confirms that KipI and KipA are proteins with two domains, and the C-terminal domains belong to the cyclophilin family. These cyclophilin domains are positioned in the complex such that their conserved surfaces face each other to form a large “bicyclophilin” cleft. We discuss the sequence conservation and possible roles across species of this near-ubiquitous protein family, which is poorly understood in terms of function. © 2011, Elsevier Ltd.
- ItemSolution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation(Wiley, 2012-04-17) Hynson, RMG; Jeffries, CM; Trewhella, J; Cocklin, STail-interacting protein of 47 kDa (TIP47) has two putative functions: lipid biogenesis and mannose 6-phosphate receptor recycling. Progress in understanding the molecular details of these two functions has been hampered by the lack of structural data on TIP47, with a crystal structure of the C-terminal domain of the mouse homolog constituting the only structural data in the literature so far. Our studies have first provided a strategy to obtain pure monodisperse preparations of the full-length TIP47/perilipin-3 protein, as well as a series of N-terminal truncation mutants with no exogenous sequences. These constructs have then enabled us to obtain the first structural characterization of the full-length protein in solution. Our work demonstrates that the N-terminal region of TIP47/perilipin-3, in contrast to the largely helical C-terminal region, is predominantly beta-structure with turns and bends. Moreover, we show that full-length TIP47/perilipin-3 adopts an extended conformation in solution, with considerable spatial separation of the N- and C-termini that would likely translate into a separation of functional domains. Proteins 2012;. © 2012, Wiley-Blackwell.