Browsing by Author "Hua, WB"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDevelopment and investigation of a NASICON‐type high‐voltage cathode material for high‐power sodium‐ion batteries(Wiley, 2020-02-03) Chen, MZ; Hua, WB; Xiao, J; Cortie, DL; Guo, XD; Wang, E; Gu, QF; Hu, Z; Indris, S; Wang, XL; Chou, SL; Dou, SXHerein, we introduce a 4.0 V class high‐voltage cathode material with a newly recognized sodium superionic conductor (NASICON)‐type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N‐doped graphene oxide‐wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all‐climate performance were carefully investigated. A near‐zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X‐ray diffraction, and the in situ X‐ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high‐voltage NASICON‐type Na3V(PO3)3N composite is a competitive cathode material for sodium‐ion batteries and will receive more attention and studies in the future. © 2019Wiley-VCHVerlagGmbH&Co
- ItemNASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density(Springer Nature, 2019-04-01) Chen, MZA; Hua, WB; Xiao, Jin; Cortie, DL; Chen, W; Wang, E; Hu, Z; Gu, QF; Wang, XL; Indris, S; Chou, SL; Dou, SXThe development of low-cost and long-lasting all-climate cathode materials for the sodium ion battery has been one of the key issues for the success of large-scale energy storage. One option is the utilization of earth-abundant elements such as iron. Here, we synthesize a NASICON-type tuneable Na4Fe3(PO4)2(P2O7)/C nanocomposite which shows both excellent rate performance and outstanding cycling stability over more than 4400 cycles. Its air stability and all-climate properties are investigated, and its potential as the sodium host in full cells has been studied. A remarkably low volume change of 4.0% is observed. Its high sodium diffusion coefficient has been measured and analysed via first-principles calculations, and its three-dimensional sodium ion diffusion pathways are identified. Our results indicate that this low-cost and environmentally friendly Na4Fe3(PO4)2(P2O7)/C nanocomposite could be a competitive candidate material for sodium ion batteries. - © Open Access This article is licensed under a Creative Commons Attribution 4.0