Browsing by Author "Hu, YS"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemCorrelated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes(Wiley, 2019-10-01) Zhang, ZZ; Zou, Z; Kaup, K; Xiao, RJ; Shi, S; Avdeev, M; Hu, YS; Wang, D; He, B; Li, H; Huang, XY; Nazar, LF; Chen, LQNa super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm−1, σtotal = 2.4 mS cm−1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit−1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration. © 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemAn O3‐type oxide with low sodium content as the phase‐transition‐free anode for sodium‐ion batteries(Wiley, 2018-06-11) Zhao, C; Avdeev, M; Chen, L; Hu, YSLayered transition metal oxides NaxMO2 (M=transition metal) with P2 or O3 structure have attracted attention in sodium‐ion batteries (NIBs). A universal law is found to distinguish structural competition between P2 and O3 types based on the ratio of interlayer distances of the alkali metal layer d(O‐Na‐O) and transition‐metal layer d(O‐M‐O). The ratio of about 1.62 can be used as an indicator. O3‐type Na0.66Mg0.34Ti0.66O2 oxide is prepared as a stable anode for NIBs, in which the low Na‐content (ca. 0.66) usually undergoes a P2‐type structure with respect to NaxMO2. This material delivers an available capacity of about 98 mAh g−1 within a voltage range of 0.4–2.0 V and exhibits a better cycling stability (ca. 94.2 % of capacity retention after 128 cycles). In situ X‐ray diffraction reveals a single‐phase reaction in the discharge–charge process, which is different from the common phase transitions reported in O3‐type electrodes, ensuring long‐term cycling stability. © 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemP2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries(Springer Nature, 2015-04-24) Wang, Y; Xiao, R; Hu, YS; Avdeev, M; Chen, LMost P2-type layered oxides exhibit Na+/vacancy-ordered superstructures because of strong Na+–Na+ interaction in the alkali metal layer and charge ordering in the transition metal layer. These superstructures evidenced by voltage plateaus in the electrochemical curves limit the Na+ ion transport kinetics and cycle performance in rechargeable batteries. Here we show that such Na+/vacancy ordering can be avoided by choosing the transition metal ions with similar ionic radii and different redox potentials, for example, Cr3+ and Ti4+. The designed P2-Na0.6[Cr0.6Ti0.4]O2 is completely Na+/vacancy-disordered at any sodium content and displays excellent rate capability and long cycle life. A symmetric sodium-ion battery using the same P2-Na0.6[Cr0.6Ti0.4]O2 electrode delivers 75% of the initial capacity at 12C rate. Our contribution demonstrates that the approach of preventing Na+/vacancy ordering by breaking charge ordering in the transition metal layer opens a simple way to design disordered electrode materials with high power density and long cycle life. Copyright © 2015, The Author(s)
- ItemPentanary transition-metals Na-ion layered oxide cathode with highly reversible O3-P3 phase transition(Elsevier, 2021-05-15) Guo, H; Avdeev, M; Sun, K; Ma, XB; Wang, HL; Hu, YS; Chen, DFTwo dual-cation transition metal fluorides K2TiF6 and K2NbF7 are introduced into Mg(BH4)2 by ball-milling to catalyze the dehydrogenation of Mg(BH4)2. According to the DSC and TPD results, the onset dehydrogenation temperature of Mg(BH4)2 doped with K2TiF6 and K2NbF7 are remarkably reduced to 105.4 and 118.0 °C, respectively. Meanwhile, both the K2TiF6 and K2NbF7 catalyzed systems can release more than 6.4 wt% H2 under 280 °C, showing an improvement in dehydrogenation kinetics. In addition, the reversible capacity of the Mg(BH4)2–3%K2TiF6 system is 2.7 wt% at 280 °C in 250 min, which is enhanced comparing to that of pristine Mg(BH4)2. X-ray diffraction, Fourier-transformed infrared and 11B nuclear magnetic resonance investigations reveal that the K2TiF6 actually acts as a catalytic precursor to react with Mg(BH4)2, forming active hydrides of KBH4 and TiH2, which further serve as catalyzing agents to facilitate the re-generation of Mg(BH4)2 from intermediates under moderate conditions. © 2021 Elsevier B.V.
- ItemUltrastable all-solid-state sodium rechargeable batteries(American Chemical Society, 2020-08-11) Yang, J; Liu, G; Avdeev, M; Wan, H; Han, F; Shen, L; Zou, Z; Shi, S; Hu, YS; Wang, CS; Yao, XThe insufficient ionic conductivity of oxide-based solid electrolytes and the large interfacial resistance between the cathode material and the solid electrolyte severely limit the performance of room-temperature all-solid-state sodium rechargeable batteries. A NASICON solid electrolyte Na3.4Zr1.9Zn0.1Si2.2P0.8O12, with superior room-temperature conductivity of 5.27 × 10–3 S cm–1, is achieved by simultaneous substitution of Zr4+ by aliovalent Zn2+ and P5+ by Si4+ in Na3Zr2Si2PO12. The bulk conductivity and grain boundary conductivity of Na3.4Zr1.9Zn0.1Si2.2P0.8O12 are nearly 20 times and almost 50 times greater than those of pristine Na3Zr2Si2PO12, respectively. The FeS2||polydopamine-Na3.4Zr1.9Zn0.1Si2.2P0.8O12||Na all-solid-state sodium batteries, with a polydopamine modification thin layer between the solid electrolyte and the cathode, maintain a high reversible capacity of 236.5 mAh g–1 at a 0.1 C rate for 100 cycles and a capacity of 133.1 mAh g–1 at 0.5 C for 300 cycles, demonstrating high performance for all-solid-state sodium batteries. © 2020 American Chemical Society