Browsing by Author "Howe, B"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAccuracy of dose calibrators for 68Ga PET imaging: unexpected findings in a multicenter clinical pretrial assessment(Society of Nuclear Medicine and Molecular Imaging (SNMMI), 2018-04) Bailey, DL; Hofman, MS; Forwood, NJ; O'Keefe, GJ; Scott, AM; van Wyngaardt, WM; Howe, B; Kovacev, O; Francis, RJ; ARTnet; ProPMSA Trial InvestigatorsWe report the discovery of a systematic miscalibration during the work-up process for site validation of a multicenter clinical PET imaging trial using 68Ga, which manifested as a consistent and reproducible underestimation in the quantitative accuracy (assessed by SUV) of a range of PET systems from different manufacturers at several different facilities around Australia. Methods: Sites were asked to follow a strict preparation protocol to create a radioactive phantom with 68Ga to be imaged using a standard clinical protocol before commencing imaging in the trial. All sites had routinely used 68Ga for clinical PET imaging for many years. The reconstructed image data were transferred to an imaging core laboratory for analysis, along with information about ancillary equipment such as the radionuclide dose calibrator. Fourteen PET systems were assessed from 10 nuclear medicine facilities in Australia, with the aim for each PET system being to produce images within 5% of the true SUV. Results: At initial testing, 10 of the 14 PET systems underestimated the SUV by 15% on average (range, 13%–23%). Multiple PET systems at one site, from two different manufacturers, were all similarly affected, suggesting a common cause. We eventually identified an incorrect factory-shipped dose calibrator setting from a single manufacturer as being the cause. The calibrator setting for 68Ga was subsequently adjusted by the users so that the reconstructed images produced accurate values. Conclusion: PET imaging involves a chain of measurements and calibrations to produce accurate quantitative performance. Testing of the entire chain is simple, however, and should form part of any quality assurance program or prequalifying site assessment before commencing a quantitative imaging trial or clinical imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging
- ItemDevelopment of the Australian standard for germanium-68 by two liquid scintillation counting methods(Elsevier B. V., 2018-04) van Wyngaardt, WM; Smith, ML; Jackson, TW; Howe, B; Tobin, SM; Reinhard, MIIn response to the increasing application of 68Ge/68Ga and 68Ga in nuclear medicine, an international comparison of activity measurement of 68Ge in equilibrium with 68Ga was organised. ANSTO standardised the comparison solution by the 4π(LS)β+-γ coincidence extrapolation and TDCR efficiency calculation methods, with excellent agreement between the two results. The primary standard was transferred to the ANSTO Secondary Standard Ionisation Chamber. Internationally traceable Australian Certified Reference Materials (ACRMs) of 68Ge/68Ga can now be prepared in various measurement geometries applied in nuclear medicine. © 2017 Crown Copyright, Published by Elsevier Ltd. All
- ItemPrimary standardisation of technetium-99m by liquid scintillation coincidence counting(Elsevier B. V., 2020-02) van Wyngaardt, WM; Tobin, SM; Lee, S; Smith, ML; Jackson, TW; Ilter, J; Howe, B; Sarbutt, ATechnetium-99m was standardised by the 4π(LS)ce-γ coincidence extrapolation method. Sensitivity of the 4π(LS) channel to two types of radiation, namely conversion electrons and γ-rays, resulted in incorrect activity values being obtained when this was not adequately accounted for. Measurements were more robust when the LS detection efficiency was optimised, and when a γ-window setting was used that monitored the combined LS efficiency for conversion electrons and γ-rays. The primary standard was internationally compared through participation in the BIPM.RI(II)-K4.Tc99m key comparison. © 2019 Elsevier Ltd
- ItemResults of an international comparison of activity measurements of 68Ge(Elsevier B. V., 2018-04) Cessna, JT; Fitzgerald, R; Zimmerman, BE; Laureano-Pérez, L; Bergeron, DE; van Wyngaardt, WM; Smith, ML; Jackson, TW; Howe, B; da Silva, CJ; Iwahara, A; da Cruz, PAL; Zhang, M; Liu, H; Liang, JC; Fréchou, C; Bobin, C; Cassette, P; Kossert, K; Nähle, O; Marganiec-Gałązka, J; Joseph, L; Ravindra, A; Kulkarni, DN; Yunoki, A; Sato, Y; Lee, KB; Lee, JM; Agusbudiman, A; Dziel, T; Listkowska, A; Tymiński, Z; Sahagia, M; Antohe, A; Ioan, MR; Luca, A; Krivosek, M; Ometakova, J; Javornik, A; Zalesakova, M; García-Toraño Martinez, E; Roteta, M; Mejuto, M; Nedjadi, Y; Juget, F; Yuan, MC; Yeh, CY; Yeltepe, E; Dirican, A; Keightley, JD; Pearce, AKAn international key comparison, identifier CCRI(II)-K2.Ge-68, has been performed. The National Institute of Standards and Technology (NIST) served as the pilot laboratory, distributing aliquots of a 68Ge/68Ga solution. Results for the activity concentration, CA, of 68Ge at a reference date of 12h00 UTC 14 November 2014 were submitted by 17 laboratories, encompassing many variants of coincidence methods and liquid-scintillation counting methods. The first use of 4π(Cherenkov)β-γ coincidence and anticoincidence methods in an international comparison is reported. One participant reported results by secondary methods only. Two results, both utilizing pure liquid-scintillation methods, were identified as outliers. Evaluation using the Power-Moderated Mean method results in a proposed Comparison Reference Value (CRV) of 621.7(11) kBq g−1, based on 14 results. The degrees of equivalence and their associated uncertainties are evaluated for each participant. Several participants submitted 3.6 mL ampoules to the BIPM to link the comparison to the International Reference System (SIR) which may lead to the evaluation of a Key Comparison Reference Value and associated degrees of equivalence. An international key comparison, identifier CCRI(II)-K2.Ge-68, has been performed. The National Institute of Standards and Technology (NIST) served as the pilot laboratory, distributing aliquots of a 68Ge/68Ga solution. Results for the activity concentration, CA, of 68Ge at a reference date of 12h00 UTC 14 November 2014 were submitted by 17 laboratories, encompassing many variants of coincidence methods and liquid-scintillation counting methods. The first use of 4π(Cherenkov)β-γ coincidence and anticoincidence methods in an international comparison is reported. One participant reported results by secondary methods only. Two results, both utilizing pure liquid-scintillation methods, were identified as outliers. Evaluation using the Power-Moderated Mean method results in a proposed Comparison Reference Value (CRV) of 621.7(11) kBq g−1, based on 14 results. The degrees of equivalence and their associated uncertainties are evaluated for each participant. Several participants submitted 3.6 mL ampoules to the BIPM to link the comparison to the International Reference System (SIR) which may lead to the evaluation of a Key Comparison Reference Value and associated degrees of equivalence. An international key comparison, identifier CCRI(II)-K2.Ge-68, has been performed. The National Institute of Standards and Technology (NIST) served as the pilot laboratory, distributing aliquots of a 68Ge/68Ga solution. Results for the activity concentration, CA, of 68Ge at a reference date of 12h00 UTC 14 November 2014 were submitted by 17 laboratories, encompassing many variants of coincidence methods and liquid-scintillation counting methods. The first use of 4π(Cherenkov)β-γ coincidence and anticoincidence methods in an international comparison is reported. One participant reported results by secondary methods only. Two results, both utilizing pure liquid-scintillation methods, were identified as outliers. Evaluation using the Power-Moderated Mean method results in a proposed Comparison Reference Value (CRV) of 621.7(11) kBq g−1, based on 14 results. The degrees of equivalence and their associated uncertainties are evaluated for each participant. Several participants submitted 3.6 mL ampoules to the BIPM to link the comparison to the International Reference System (SIR) which may lead to the evaluation of a Key Comparison Reference Value and associated degrees of equivalence. © 2021 Elsevier Ltd.