Browsing by Author "Hotchkis, MAC"
Now showing 1 - 20 of 94
Results Per Page
Sort Options
- Item14C AMS measurements of the bomb pulse in N- and S- hemisphere tropical trees(Elsevier, 1997-03-02) Murphy, JO; Lawson, EM; Fink, D; Hotchkis, MAC; Hua, Q; Jacobsen, GE; Smith, AM; Tuniz, CThe 14C bomb-pulse signature has been measured by AMS on cross-dateable teak samples from N- and S-hemisphere locations in the tropics. Excellent agreement is found with the atmospheric 14C content in the period 1955 to 1980 for the respective hemispheres. These results demonstrate that 14C measurements can be used to facilitate growth rate determinations in tropical trees. © 1997 Elsevier B.V.
- Item14C analyses at the ANTARES AMS Centre: dating the log coffins of northwest Thailand(Elsevier, 1994-06-03) Hotchkis, MAC; Fink, D; Jacobsen, GE; Lawson, EM; Shying, ME; Smith, AM; Tuniz, C; Barbetti, M; Grave, P; Quan, HM; Head, JRecent results of 14C analyses at the ANTARES AMS Centre are presented. Test measurements of 14C blanks demonstrate an ultimate sensitivity of the order of 10−15 (14C/12C ratio). Measurements of unknowns have been made with a precision in the range 1–1.5% using a “slow cycling” mode of operation where the injection magnet field is changed to inject 14C and 13C alternately. Results are presented for a series of log coffins from cave burials in NW Thailand. © 1994 Elsevier B.V.
- Item14C in uranium and thorium minerals: a signature of cluster radioactivity?(Springer Nature, 1999-06-01) Bonetti, R; Guglielmetti, A; Poli, G; Sacchi, E; Fink, D; Hotchkis, MAC; Jacobsen, GE; Lawson, EM; Hua, Q; Smith, AM; Tuniz, CVarious uranium and thorium minerals have been analysed with accelerator mass spectrometry to determine their 14C content. It is found that, whenever the contribution from secondary reactions such as the 11B(α,p)14C is sufficiently low, the 14C concentration is consistent with that expected from 14C (spontaneous) cluster radioactivity from radium isotopes of the uranium and thorium natural series. © Springer-Verlag 1999
- Item15th International Conference on Accelerator Mass Spectrometry(Australian Nuclear Science and Technology Organisation, 2021-11-15) Bertuch, F; Child, DP; Fink, D; Fülöp, RH; Hotchkis, MAC; Hua, Q; Jacobsen, GE; Jenkinson, A; Levchenko, VA; Simon, KJ; Smith, AM; Wilcken, KM; Williams, AA; Williams, ML; Yang, B; Fallon, SJ; Wallner, TOn behalf of the AMS-15 Organising committee, we would like to thank you for attending the 15th International Conference on Accelerator Mass Spectrometry. Held as an online event for the first time, the 2021 conference attracted over 300 attendees with presentations delivered by colleagues and professionals from around the globe.Applications of AMS to the world’s most pressing problems/questions: A-1 : Earth’s dynamic climate palaeoclimate studies, human impacts on climate, data for climate modelling. A-2 : Water resource sustainability groundwater dating, hydrology, water quality and management A-3 : Living landscapes soil production, carbon storage, erosion, sediment transport, geomorphology. A-4 : Catastrophic natural events volcanoes, cyclones, earthquakes, tsunamis, space weather, mass extinctions. A-5 : Advancing human health metabolic and bio-kinetic studies, bomb-pulse dating, diagnostics and bio-tracing. A-6 : Challenges of the nuclear age nuclear safeguards, nuclear forensics, nuclear waste management, nuclear site monitoring, impacts of nuclear accidents. A-7 :Understanding the human story archaeology, human evolution and migration, history, art and cultural heritage A-8 : Understanding the cosmos fundamental physics, nuclear astrophysics, nuclear physics AMS Research and Development: T-1 : Novel AMS systems, components and techniques T-2 : Suppression of isobars and other interferences T-3 : Ion sourcery T-4 : New AMS isotopes T-5 : Advances in sample preparation T-6 : Data quality and management T-7 : Facility Reports (Poster Presentation only)
- Item20th International Workshop on Electron Cyclotron Resonance Ion Sources (ERCIS-2012)(Australian Nuclear Science and Technology Organisation, 2012-09-25) Button, D; Hotchkis, MAC; Lobanov, NOn behalf of the Organising Committee, I am pleased to welcome you to the 20th International Workshop on Electron Cyclotron Resonance Ion Sources (ECRIS-2012), being held in Sydney, Australia, from 25th-28th September 2012. Following the last workshop in Grenoble, the birthplace of ECR ion sources, it is perhaps fitting that the workshop comes to Sydney this year, on the very opposite side of the planet, to show that ECRIS science and technology has indeed literally spread all around the world. The workshop will focus on the latest developments in performance, modelling and applications of ECR ion sources along with the associated physics and technologies. The workshop is organised by the Australian Nuclear Science and Technology Organisation (ANSTO), with the support of the Australian Institute of Nuclear Science and Engineering, the Australian National University in Canberra and the Australian Collaboration for Accelerator Science.
- ItemAccelerator mass spectrometry analyses of environmental radionuclides: sensitivity, precision and standardisation(Elsevier, 2000-10-01) Hotchkis, MAC; Fink, D; Tuniz, C; Vogt, SAccelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. AMS allows an isotopic sensitivity as low as one part in 1015 for 14C (5.73 ka), 10Be (1.6 Ma), 26Al (720 ka), 36Cl (301 ka), 41Ca (104 ka), 129I (16 Ma) and other long-lived radionuclides occurring in nature at ultra-trace levels. These radionuclides can be used as tracers and chronometers in many disciplines: geology, archaeology, astrophysics, biomedicine and materials science. Low-level decay counting techniques have been developed in the last 40–50 years to detect the concentration of cosmogenic, radiogenic and anthropogenic radionuclides in a variety of specimens. Radioactivity measurements for long-lived radionuclides are made difficult by low counting rates and in some cases the need for complicated radiochemistry procedures and efficient detectors of soft β-particles and low energy x-rays. The sensitivity of AMS is unaffected by the half-life of the isotope being measured, since the atoms not the radiations that result from their decay, are counted directly. Hence, the efficiency of AMS in the detection of long-lived radionuclides is 106–109 times higher than decay counting and the size of the sample required for analysis is reduced accordingly. For example, 14C is being analysed in samples containing as little as 20 μg carbon. There is also a world-wide effort to use AMS for the analysis of rare nuclides of heavy mass, such as actinides, with important applications in safeguards and nuclear waste disposal. Finally, AMS microprobes are being developed for the in-situ analysis of stable isotopes in geological samples, semiconductors and other materials. Unfortunately, the use of AMS is limited by the expensive accelerator technology required, but there are several attempts to develop compact AMS spectrometers at low (⩽0.5 MV) terminal voltages. Recent advances in AMS will be reviewed with highlights from the scientific programs at Lucas Heights and other AMS centres. © 2000 Elsevier Science Ltd.
- ItemAccelerator mass spectrometry measurements of 233U in groundwater, soil and vegetation at a legacy radioactive waste site(Elsevier, 2024-06) Payne, TE; Harrison, JJ; Child, DP; Hankin, SI; Hotchkis, MAC; Hughes, CE; Johansen, MP; Thiruvoth, S; Wilsher, KLLow-level radioactive wastes were disposed at the Little Forest Legacy Site (LFLS) near Sydney, Australia between 1960 and 1968. According to the disposal records, 233U contributes a significant portion of the inventory of actinide activity buried in the LFLS trenches. Although the presence of 233U in environmental samples from LFLS has been previously inferred from alpha-spectrometry measurements, it has been difficult to quantify because the 33U and 234U α-peaks are superimposed. Therefore, the amounts of 233U in groundwaters, soils and vegetation from the vicinity of the LFLS were measured using accelerator mass spectrometry (AMS). The AMS results show the presence of 233U in numerous environmental samples, particularly those obtained within, and in the immediate vicinity of, the trenched area. There is evidence for dispersion of 233U in groundwater (possibly mobilised by co-disposed organic liquids), and the data also suggest other sources of 233U contamination in addition to the trench wastes. These may include leakages and spills from waste drums as well as waste burnings, which also occurred at the site. The AMS results confirm the historic information regarding disposal of 233U in the LFLS trenches. The AMS technique has been valuable to ascertain the distribution and environmental behaviour of 233U at the LFLS and the results demonstrate the applicability of AMS for evaluating contamination of 233U at other radioactive waste sites. © 2024 Australian Nuclear Science and Technology Organisation. Published by Elsevier Ltd. This is an open access article under the CC BY license
- ItemAccelerator mass spectrometry on SIRIUS: new 6MV spectrometer at ANSTO(University of Jyväskylä, Finland, 2016-07-03) Wilcken, KM; Fink, D; Hotchkis, MAC; Garton, D; Button, D; Mann, M; Kitchen, RAs a part of Australian Federal Government funding in 2009 to establish a centre for accelerator science a new 6 MV state of the art accelerator – SIRIUS – was purchased. The system is now commissioned and comprises ion sources and beam lines to cater for a wide variety of both IBA and AMS applications. The ion source used for AMS (MC-SNICS) is the latest incarnation followed by 45 degree spherical ESA(R=0.3 m) and double focusing injection magnet (R=1 m, ME=20) prior the accelerator. At the terminal we have a choice of 2 stripper gasses and/or stripper foils. The high-energy spectrometer for AMS consists of a 1.27 m radius analyzing magnet with ME=176, 45 degree ESA (R=3.81m), followed by a switching magnet and 3 beam lines: one with a standard multianode ionization chamber; one with an absorber cell in front of the detector; whereas the third beam line has a time-of- ight detector. Details of the instrument design and performance data for 10Be, 26Al and 36Cl will be presented. © The Authors
- ItemAccelerator mass spectrometry on SIRIUS: new 6MV spectrometer at ANSTO(Elsevier, 2016-07-08) Wilcken, KM; Fink, D; Hotchkis, MAC; Garton, D; Button, D; Mann, M; Kitchen, RThe Centre for Accelerator Science at ANSTO operates four tandem accelerator systems for Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA). The latest addition to the fleet is SIRIUS, a 6 MV combined IBA and AMS system. Following initial ion beam testing, conditioning and debugging software and hardware, SIRIUS is now commissioned. Details of the instrument design and performance data for 10Be, 26Al and 36Cl are presented.
- ItemAccumulation of plutonium in mammalian wildlife tissues following dispersal by accidental-release tests(Elsevier, 2016-01-01) Johansen, MP; Child, DP; Caffrey, EA; Harrison, JJ; Hotchkis, MAC; Payne, TE; Ikeda-Ohno, A; Thiruvoth, S; Beresford, NA; Twining, JR; Davis, EWe examined the distribution of plutonium (Pu) in the tissues of mammalian wildlife inhabiting the relatively undisturbed, semi-arid former Taranaki weapons test site, Maralinga, Australia. The accumulation of absorbed Pu was highest in the skeleton (83% ± 6%), followed by muscle (10% ± 9%), liver (6% ± 6%), kidneys (0.6% ± 0.4%), and blood (0.2%). Pu activity concentrations in lung tissues were elevated relative to the body average. Foetal transfer was higher in the wildlife data than in previous laboratory studies. The amount of Pu in the gastrointestinal tract was highly elevated relative to that absorbed within the body, potentially increasing transfer of Pu to wildlife and human consumers that may ingest gastrointestinal tract organs. The Pu distribution in the Maralinga mammalian wildlife generally aligns with previous studies related to environmental exposure (e.g. Pu in humans from worldwide fallout), but contrasts with the partitioning models that have traditionally been used for human worker-protection purposes (approximately equal deposition in bone and liver) which appear to under-predict the skeletal accumulation in environmental exposure conditions. © 2015, Elsevier Ltd.
- ItemAccumulation of plutonium in mammalian wildlife tissues: comparison of recent data with the ICRP distribution models(International Conference on Radioecology and Environmental Radioactivity, 2014-07-01) Johansen, MP; Child, DP; Davis, E; Hotchkis, MAC; Payne, TE; Ikeda-Ohno, A; Twining, JRWe examined the distribution of plutonium (Pu) in the tissues of mammalian wildlife to address the paucity of such data under environmental exposure conditions. Pu activity concentrations were measured in Macropus rufus (red kangaroo), Oryctolagus cuniculus (European rabbit), and Pseudomys hermannsburgensis (sandy inland mouse)inhabiting the relatively undisturbed, semi-arid conditions at the former Taranaki weapons test site at Maralinga, Australia. Of the absorbed Pu (distributed via circulatory and lymph systems) accumulation was foremost in bone (83% ±10% SD), followed by muscle (9% ±10%), liver (7% ±7%), kidneys (0.5% ±0.3%), and heart (0.4% ±0.4%). The bone values are higher than those reported in ICRP 19 and 48 (45-50% bone), while the liver values are lower than ICRP values (30-45% liver). The ICRP values were based on data dominated by relatively soluble forms of Pu, including prepared solutions and single-atom ions produced by decay following the volatilisation of uranium during nuclear detonation (fallout Pu, ICRP 1986). In contrast, the Maralinga data relates to low-soluble forms of Pu used in tests designed to simulate accidental release and dispersal. We measured Pu in lung, GI-tract and the skin and fur as distinct from the absorbed Pu in bone, liver, muscle, and kidneys. Compared with the mean absorbed activity concentrations, the results for lung tissues were higher by up to one order of magnitude, and those in the GI tract contents and the washed skin/fur were higher by more than two orders of magnitude. These elevated levels are consistent with the presence of low-soluble Pu, including particulate forms, which pass through, or adhere upon, certain organs, but are not readily absorbed into the bloodstream. This more transitory Pu can provide dose to the lung and GI tract organs, as well as provide potential transfer of contamination when consumed in predator-prey food chains, or during human foodstuff consumption. For example, activity concentrations in O. cuniculus edible samples prepared according to traditional aboriginal methods were more than two orders of magnitude higher than in muscle alone. The increase was due to inclusion of GI tract components and contents in the traditional method. Our results provide new insights into the sequestration of Pu in mammalian tissues under environmental exposure conditions. These results contrast with those related to the specific forms of Pu and exposure conditions upon which the ICRP models were based. However, they provide data relevant to the assessment of key environmental legacy waste sites, and of potential release scenarios for the low-soluble oxide forms in the growing worldwide inventory of Pu associated with power production.
- ItemAchieving the ultimate sensitivity in Accelerator Mass Spectrometry of high mass isotopes(Australian National University, 2019-09-09) Hotchkis, MAC; Child, DP; Williams, ML; Wallner, A; Froehlich, MB; Koll, DThe VEGA AMS system at ANSTO, based on a 1MV tandem accelerator, was custom-designed to achieve the highest possible sensitivity for high mass isotopes. It incorporates multiple medium-resolving power analysing elements: one magnetic element for the injected negative ions, followed by magnetic, electrostatic and second magnetic elements for positive ions after acceleration. This design, with mass and energy resolving powers in the range 500 to 1000, separates isotopes and suppresses backgrounds that may originate from a variety of ion species. The gas stripper in the high-voltage terminal is key both to system efficiency and to background suppression. Helium gas stripping is used, providing around 40% ion yield to the most abundant charge state (3+). The stripper pressure must be sufficient to break up all molecules while minimising the scattering angle of the ions as they undergo charge-changing collisions. Our recent work has demonstrated that the need for production of negative molecular ions in AMS of actinides is not such a barrier to high efficiency: the VEGA sputter ion source can achieve greater than 1% efficiency for production of plutonium oxide negative ions and so overall sensitivity to a few hundred atoms in a sample is possible. We are involved in a number of projects requiring high sensitivity and low backgrounds. Examples include the detection of 244Pu of extraterrestrial origin in deep oceanic ferromanganese crusts; radioecology of plutonium in the environment of former nuclear test sites; detection of nuclear signatures for nuclear safeguards and forensics; use of Pu in global fallout as a chrono-marker in environmental studies; measurement of platinum-group-element isotope ratios in meteorites; evaluation of the radio-purity of materials for use in dark matter searches. Each of these projects presents their own particular challenges. In some cases, sensitivity is limited by background from scattered ions of species other than the one of interest. In other situations, cross-contamination between samples, in the sample prep lab or ion source, limits sensitivity. Other projects or previous uses of laboratories may leave residual contamination. For stable and very long-lived species, such as PGEs and major uranium isotopes, the ubiquity of those species at low levels in almost all materials sets limits. © The Authors.
- ItemActinides AMS for nuclear safeguards and related applications(Elsevier, 2010-04) Hotchkis, MAC; Child, DP; Zorko, BThe nuclear safeguards system which is used to monitor compliance with the Nuclear Non-proliferation Treaty relies to a significant degree on the analysis of environmental samples. Undeclared nuclear activities can be detected through determination of the isotopic ratios of uranium and plutonium in such samples. It is necessary to be able to measure plutonium at the femtogram level in this application, and measure the full suite of uranium isotopes (233–238U) where the total uranium content may be at the nanogram level. In this paper we describe the development of our accelerator mass spectrometry system for such analyses, with particular reference to recent improvements in our methods. The commissioning of a fast isotope cycling system for actinides has led to improved precision, with reproducibility of 4% for actinide isotope ratios. The background level for the key rare isotope 236U is found to be 8.8 fg, for total uranium content in the nanogram range, and is limited by 236U contamination rather than ion mis-identification. For plutonium the background is at the low femtogram level. © 2009 Published by Elsevier B.V.
- ItemActinides AMS on the VEGA accelerator(Elsevier B. V., 2019-01-01) Hotchkis, MAC; Child, DP; Froehlich, MB; Wallner, A; Wilcken, KM; Williams, MLThe VEGA 1MV accelerator at ANSTO is designed to be a highly versatile AMS instrument. In this paper we focus on describing those aspects of the system that are designed to optimise its performance for actinides isotopic analysis, in particular the implementation of fast isotope cycling and multiple isotope detection methods to enable isotope detection across a wide range of rates and currents. Charge state yields are reported in the energy range from 0.3 to 1.0 MeV with helium gas stripping, showing that the highest yield for the 3+ charge state occurs around 1 MeV and exceeds 40%. Accuracy and precision for uranium isotope ratios are shown to approach 1% over a wide range of concentrations and isotope ratios. The ionisation efficiency for plutonium is shown to exceed 3%, leading to overall detection efficiency over 1%. In the absence of background, this leads to sub-attogram detection limits for several Pu isotopes including 244Pu. Crown Copyright © 2018 Published by Elsevier B.V.
- ItemActinides AMS sample processing capability at ANSTO – a tour by poster(Australian Nuclear Science and Technology Organisation, 2021-11-17) Child, DP; Hotchkis, MACDesigning and developing sample processing facilities for processing of samples for actinides analysis poses some unique challenges. Facilities for actinide research need to be tailored to specific application areas, sample composition for each area of research may contain isotopic ratio mixtures and isotopic concentrations incompatible with the sensitivity requirements and background/blank levels of adjacent projects. This is due to the widely varying sample compositions related to the source of the actinides, for example age dating of nuclear materials compared to safeguards analysis of uncontaminated swipe samples. The Actinides AMS capability at ANSTO’s Centre for Accelerator Science is operated by a small research group focussed on providing support for government, academic and industry users, and stakeholder projects. These facilities have been designed with versatility in mind, specialising on provision of high sensitivity analyses for low activity samples and projects to support the greatest breadth of applications. The current range of research applications supported include: Environmental occurrence and distribution of anthropogenic actinides - Actinides bomb pulse dating and tracing – geomorphology - Radioecology - biological uptake of nuclear activities environmental release Non-proliferation and monitoring - Nuclear Safeguards – swipe sample monitoring and wide area environmental sampling - Nuclear Forensics - nuclear material characterisation and dating - Environmental monitoring – emergency response, contamination monitoring, baseline studies Actinides from astrophysical events The Actinides AMS chemistry laboratory has been purpose built for low level environmental actinides sample preparation, in particular for high sensitivity low abundance actinides isotope (²³³U, ²³⁶ U, ²³⁹ Pu, ²⁴ ⁰ Pu, ²⁴ ¹Pu, ²⁴ ⁴ Pu), allowing for segregation of “dirty” operations (unpacking and handling of dried environmental materials) to progressively cleaner environments whilst still allowing for aggressive sample destruction and dissolution. To achieve this a range of specialised sample preparation components and configurations have been employed to allow for a wide range of sample types (swipes/filters, soils/sediments, biota, water, minerals) with elimination of possibility of sample crosstalk, dust and external atmospheric ingress and contamination. This is especially important given the potential for high dynamic ranges of isotopic concentrations between consecutively handled research projects. To support research applications unable to be handled in the AMS Actinides laboratory, partnered facilities with capability to process active materials are utilised to pre-treat samples and deliver subsamples suitable for handling in the low-level AMS laboratories. We present here the methodologies, processes and backgrounds achieved to deliver high sensitivity actinide samples for a range of applications and give the current status of the Actinides AMS capability.
- ItemActinides isotopic analysis using a 1 MV AMS system(University of Jyväskylä, Finland, 2016-07-03) Hotchkis, MAC; Child, DP; Wilcken, KM; Kitchen, RThe VEGA 1 MV AMS system at ANSTO has been custom-designed to cover analysis of a wide range of long-lived radioisotopes, including routine radiocarbon analysis and multiple-isotope analysis of actinides. The system incorporates 1.0 m radius injection and analysing magnets with o -axis cups on high and low mass sides. Following the analysing magnet, rare isotope beams pass through a 1m radius spherical electrostatic analyser and a 120 1 m radius magnet. The detector station consists of a two-anode gas detector, with o -axis options to direct isotopes to either a Faraday cup or an electron multiplier ion counter. All three analysing magnets are fitted with electrostatic bouncer systems. At the LE end, the bouncer works in the usual way for all isotope combinations of interest, including 12C-13C-14C and actinides. The HE bouncers are used to transmit a range of masses of interest for actinides analysis, for example mass 239 to 244 Pu isotopes. For uranium analysis, the less rare isotopes can be directed to o axis cups or the ion counter. Software has been implemented to enable a high degree of exibility in analysing up to 8 isotopes at a time. In this paper we present details of the system and its performance and applications. © The Authors
- ItemAMS at ANTARES – the first 10 years(Elsevier, 2000-10) Lawson, EM; Elliott, G; Fallon, J; Fink, D; Hotchkis, MAC; Hua, Q; Jacobsen, GE; Lee, P; Smith, AM; Tuniz, C; Zoppi, UThe status and capabilities of the ANTARES AMS facility after 10 years are reviewed. The common AMS radioisotopes, 10Be, 14C, 26A1, 36C1 and 129I, are routinely analysed. A capability for the detection of 236U and other actinide isotopes has been developed. The measurement program includes support to Quaternary science projects at Australian universities and to ANSTO projects in global climate change and nuclear safeguards. © 2000 Elsevier Science B.V.
- ItemAMS measurement of 129I, 36C1 and 14C in underground waters from Mururoa and Fangataufa atolls(Elsevier, 2000-10) Jacobsen, GE; Hotchkis, MAC; Fink, D; Child, DP; Tuniz, C; Sacchi, E; Levins, DM; Povinec, PP; Mulsow, SAMS analyses of 36Cl, 129I and 14C in underground water have been performed as part of IAEA’s assessment of the radiological situation at Mururoa and Fangataufa atolls. The samples consisted of waters from monitoring wells, and from two cavity-chimneys created by underground nuclear tests. The water samples from the monitoring wells contained varying concentrations of radionuclides, with the highest concentrations of radionuclides found in the two test cavity-chimneys. A comparison of the concentrations of radionuclides determined by AMS, 36Cl and 129I, and with radionuclides determined using conventional methods, 3H, 90Sr and 137Cs, shows a reasonable correlation. However, some differences in behaviour, mainly attributed to differences in the sorption characteristics of the elements, are discernible. The concentrations of radionuclides in the underground environment were used to validate geosphere transport models. © 2000 Elsevier Science B.V.
- ItemAMS radiocarbon analysis of microsamples(Australian Institute of Nuclear Science and Engineering, Australian Nuclear Science & Technology Organisation and Australian Museum, 1997-02-12) Jacobsen, GE; Hua, Q; Tarshishi, J; Fink, D; Hotchkis, MAC; Lawson, EM; Smith, AM; Tuniz, CThe ANTARES AMS Centre has two chemistry laboratories dedicated to preparing targets for measurement. Target preparation encompasses a variety of activities ranging from the curation of incoming samples to the numerous steps involved in the purification and processing of dissimilar samples. One of the two laboratories is set up for the physical and chemical pretreatment of 14C samples. Treatments include cleaning by sonification, sorting, grinding and sieving, and chemical treatments such as the standard AAA treatment, and solvent extraction. Combustion and graphitisation are also carried out in this laboratory. The second laboratory is a clean room and is dedicated to the combustion, hydrolysis and graphitisation of 14C samples as well as processing targets for the other isotopes. Combustion is achieved by heating the sample to 900 deg C in the presence of CuO, the resulting gas is purified by passing over Ag and Cu wire at 600 deg C. Graphitisation is carried out by reducing the CO{sub 2} with an iron catalyst (600 deg C) in the presence of zinc (400 deg C) and a small amount of hydrogen. Samples such as charcoal, shell, bone, wood, sediment, seawater and groundwater, containing 0.3-1 mg or more of original carbon, are processed routinely for radiocarbon analysis. The current 14C chemistry background for 1 mg carbon is approx. 0.3 percent of modern carbon (pMC) enabling materials` dating up to 45 000 BP.
- ItemAnalysis of hot particle characteristics affecting environmental fate and interaction with living organisms(SPERA, 2016-09-09) Johansen, MP; Child, DP; Collins, RN; Hotchkis, MAC; Howell, NR; Payne, TE; Ikeda-Ohno, A; Mokhber-Shahin, LThe 2nd International Conference on the Sources, Effects and Risks of Ionizing Radiation (SERIR-2) and the 14th Biennial Conference of the South Pacific Environmental Radioactivity Association (SPERA-2016) and will be held in Bali, Indonesia 5-9 September 2016. The South Pacific Environmental Radioactivity Association (SPERA), in conjunction with the Indonesian National Nuclear Energy Agency (BATAN) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) made the decision to jointly hold these conferences in one week at the same venue to avoid topical overlap and to strengthen regional participation at both events. SERIR2 will be a 1-day conference (5 September) and deals with the efforts to enhance data collection and disseminate scientific findings related to the issues of sources, effects and risks of the ionizing radiation, as well as to seek ways of communicating with stakeholders (scientific communities, regulatory authorities and general public) on those issues. The 14th Biennial Conference of the South Pacific Environmental Radioactivity Association (SPERA), to be held 6-9 September, provides a platform for discussion and debate among scientists on the occurrence, behaviour, impact and measurement of radioactive species present in the environment through natural processes, or resulting from human activities. This international conference facilitates knowledge sharing on environmental radioactivity and related topics of local and global significance. The joint conference will be held 5-9 September 2016, with a welcome reception on 4 September, at the Sanur Paradise Plaza Hotel in Bali. The joint conference will include a one-day workshop on the 6 September on topic(s) to be decided.