Browsing by Author "Hosseini, A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe estimation of absorbed dose rates for non-human biota: an extended inter-comparison(Springer, 2011-05-01) Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, NA; Copplestone, D; Horyna, J; Hosseini, A; Johansen, MP; Kamboj, S; Keum, DK; Kurosawa, N; Newsome, L; Olysaegers, G; Vandenhove, H; Ryufuku, S; Lynch, SV; Wood, MD; Yu, CAn exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of +/- 20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. © 2011, Springer.
- ItemRecent development of wildlife transfer databases(International Union of Radioecology, 2014) Beresford, NA; Copplestone, D; Hosseini, A; Brown, JE; Johansen, MP; Hirth, GA; Sheppard, S; Dagher, E; Yankovich, T; Uchida, S; Napier, J; Outola, I; Wells, C; Barnett, CL; Wood, MD; Howard, BJThe transfer of radionuclides to wildlife in the environmental radiological assessment models developed over the last two decades is most often described by the whole organism concentration ratio (CRwo-media). This parameter relates whole organism activity concentrations to those in environmental media (typically soil for terrestrial ecosystems and water for aquatic ecosystems). When first released in 2007, the ERICA Tool contained the most comprehensive and well documented CRwo-media database available for wildlife. It was subsequently used in the US DOE RESRAD-BIOTA model and formed the initial basis for the international wildlife transfer database (WTD; www.wildlifetransferdatabase.org/?) developed to support IAEA and ICRP activities. Subsequently, many additional data were input to the WTD, including the outputs of a review of Russian language literature and data from Canadian monitoring programmes associated with nuclear power plants, U-mining and related industries. Summarised data from the WTD in 2011 were used to provide CRwo values in ICRP 114 and the IAEA's handbook on wildlife transfer parameters (http://www-ns.iaea.org/projects/emras/emras2/working-groups/working-group-five.asp?s=8&l=63). This paper provides an update on the development of the WTD subsequent to 2011 and its application to derive revised default CRwo-media parameter values of the ERICA Tool. Since 2011, some circa 17,000 additional CRwo-media values have been added to the WTD. The new inputs include original data for: representative species of the ICRPs Representative Animals and Plants (RAPs) from a UK forest; monitoring data from Japanese estuaries and Finland; Canadian wildlife; plutonium uptake data from US weapons testing programme sites; wild plants and invertebrates from north western USA; refereed literature published after 2011. Additionally, data already in the WTD from Australia were reviewed with reference to original source reports not previously considered and amended where required. The revised WTD was quality checked by considering the degree of variation in the data for each organism-element combination and the change between the WTD versions. This identified a number of errors (e.g. double entry of data, unit conversion errors and entries based on a dry matter rather than the required fresh weight basis) all of which have now been rectified. Statistical analyses of the WTD have demonstrated that there is currently no justification to subdivide CRwo-media from e.g. mammal to mammal herbivore and mammal carnivore etc.. In revising the ERICA Tool, a more generic categorisation of organisms has subsequently been used. Even with the increase in available data, there are still many radionuclide-organism combinations for which data are lacking. To provide default values where there are no data, a set of rules have been derived including the use of Bayesian statistics. (authors)
- ItemWhole-body to tissue concentration ratios for use in biota dose assessments for animals(Springer, 2010-11) Yankovich, TL; Beresford, NA; Wood, MD; Aono, T; Andersson, P; Barnett, CL; Bennett, P; Brown, JE; Fesenko, S; Fesenko, J; Hosseini, A; Howard, BJ; Johansen, MP; Phaneuf, MM; Tagami, K; Takata, H; Twining, JR; Uchida, SEnvironmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed. © 2010, Springer.