Browsing by Author "Hong, F"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA comparative study of magnetic behaviors in TbNi2, TbMn2 and TbNi2Mn(AIP Publishing LLC., 2014-01-01) Wang, JL; Din, MFM; Kennedy, SJ; Hong, F; Campbell, SJ; Studer, AJ; Wu, GH; Cheng, ZX; Dou, SXAll TbNi2, TbMn2, and TbNi2Mn compounds exhibit the cubic Laves phase with AB2-type structure in spite of the fact that the ratio of the Tb to transition-metal components in TbNi2Mn is 1:3. Rietveld refinement indicates that in TbNi2Mn the Mn atoms are distributed on both the A (8a) and B (16d) sites. The values of the lattice constants were measured to be a¼14.348A ° (space group F-43 m), 7.618A ° , and 7.158A ° (space group Fd-3 m) for TbNi2, TbMn2, and TbNi2Mn, respectively. The magnetic transition temperatures TC were found to be TC¼38K and TC¼148K for TbNi2 and TbNi2Mn, respectively, while two magnetic phase transitions are detected for TbMn2 at T1¼20K and T2¼49 K. Clear magnetic history effects in a low magnetic field are observed in TbMn2 and TbNi2Mn. The magnetic entropy changes have been obtained. © 2014 AIP Publishing LLC.
- ItemThe magnetocaloric effect and critical behaviour of the Mn0.94Ti0.06CoGe alloy(IOP Publishing Ltd., 2013-02-06) Shamba, P; Wang, JL; Debnath, JC; Kennedy, SJ; Zeng, R; Din, MFM; Hong, F; Cheng, ZX; Studer, AJ; Dou, SXStructural, magnetic and magnetocaloric properties of the Mn(0.94)Ti(0.06)CoGe alloy have been investigated using x-ray diffraction, DC magnetization and neutron diffraction measurements. Two phase transitions have been detected, at T(str) = 235 K and T(C) = 270 K. A giant magnetocaloric effect has been obtained at around Tstr associated with a structural phase transition from the low temperature orthorhombic TiNiSi-type structure to the high temperature hexagonal Ni(2)In-type structure, which is confirmed by neutron study. In the vicinity of the structural transition, at T(str), the magnetic entropy change, -Delta S(M) reached a maximum value of 14.8 J kg(-1) K(-1) under a magnetic field of 5 T, which is much higher than that previously reported for the parent compound MnCoGe. To investigate the nature of the magnetic phase transition around T(C) = 270 K from the ferromagnetic to the paramagnetic state, we performed a detailed critical exponent study. The critical components gamma, beta and delta determined using the Kouvel-Fisher method, the modified Arrott plot and the critical isotherm analysis agree well. The values deduced for the critical exponents are close to the theoretical prediction from the mean-field model, indicating that the magnetic interactions are long range. On the basis of these critical exponents, the magnetization, field and temperature data around T(C) collapse onto two curves obeying the single scaling equation M(H, epsilon) = epsilon(beta)f +/- (H/epsilon(beta+gamma)). © 2013 IOP Publishing LTD
- ItemOn the crystal structure and magnetic properties of the Mn0.94Ti0.06CoGe alloy(American Institute of Physics., 2013-05-07) Shamba, P; Wang, JL; Debnath, JC; Zeng, R; Hong, F; Cheng, ZX; Studer, AJ; Kennedy, SJ; Dou, SXStructural and magnetic properties of Mn0.94Ti0.06CoGe have been studied by a combination of bulk magnetisation and neutron diffraction measurements over the temperature range of 5 K-350 K. The crystal structural transition occurs at T-str (similar to 235 K) with a change in symmetry from the low temperature orthorhombic TiNiSi-type structure (space group Pnma) to the high temperature hexagonal Ni2In-type structure (space group P63/mmc) and the magnetic phase transition takes place around T-C = 270 K. It is found that the structural transition around T-str is incomplete and there is a co-existence of the orthorhombic and hexagonal structures between T-str and T-C (similar to 270 K). These results are discussed in connection with the magnetic and magnetocaloric behaviours in Mn0.94Ti0.06CoGe. © 2013, American Institute of Physics.