Browsing by Author "Hattori, T"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHydrates under pressure - new insights from sulfuric acid hydrates(Australian Institute of Physics, 2016-02-04) Maynard-Casely, HE; Hattori, T; Sano-Furukawa, A; Machida, S; Komatsu, KHydrates are a rich and diverse class of materials that display a wide range of structures and properties – a feature that is only exaggerated when they are subjected to high-pressures. Consequently, these have implications on our understanding of many outer solar system bodies, where hydrates are amongst the dominant materials found there. For Europa and Ganymede, two moons under intense investigation from past and future space missions, their surfaces seen to be mostly water-ice and hydrates. Despite the apparent ‘simplicity’ of these materials, we still observe very complex geological formations on these moons – including subduction. Hence, we need to understand the transformations of candidate surface materials under a range of pressure/temperature conditions in order to accurately explain the formations on these icy surfaces. One hydrate candidate material for the surfaces of these moons are sulfuric acid hydrates, formed from radiolytic sulfur (from Io) reacting with the surface ice. Sulfuric acid hydrates have already been established to have a complex phase diagram with composition. We have now used the Mito cell at the PLANET instrument to undertake the first investigation of the high-pressure behaviour of the water rich sulfuric acid hydrates. Compressing at 100 K and 180 K we see that the hemitriskaidekahydrate becomes the stable water-rich hydrate and observe some interesting relaxation behaviour in this material at pressure, which could have significant consequences for the interiors of Ganymede.
- ItemPressure-modulated magnetism and negative thermal expansion in the Ho2Fe17 intermetallic compound(American Chemical Society, 2023-05-25) Cao, YL; Zhou, H; Khmelevskyi, S; Lin, K; Avdeev, M; Wang, CW; Wang, B; Hu, F; Kato,; Hattori, T; Abe, J; Ohara, K; Kawaguchi, S; Li, Q; Fukuda, M; Nishikubo, T; Lee, K; Koike, T; Liu, Q; Miao, J; Deng, JX; Shen, B; Azuma, M; Xing, XHydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho2Fe17 on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level (EF), which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials. © 2024 American Chemical Society