Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hart, JN"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: a sodium-centred perspective
    (John Wiley & Sons, Inc, 2015-08-17) Sharma, N; Gonzalo, E; Pramudita, JC; Han, MH; Brand, HEA; Hart, JN; Pang, WK; Guo, ZP; Rojo, T
    The development of new insertion electrodes in sodium-ion batteries requires an in-depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X-ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3-phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3-phase persists throughout the charge/discharge cycle but undergoes a series of two-phase and solid-solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space-group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two-phase and solid-solution phase transitions simultaneously. The Mn/Fe-O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3-phase throughout the charge/discharge process. © 2015 Wiley-VCH Verlag GmbH & Co.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback