Browsing by Author "Hart, DE"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDetermining flow patterns and emplacement dynamics from tsunami deposits with no visible sedimentary structure(John Wiley and Sons, 2016-09-16) Kain, CL; Wassmer, P; Goff, JR; Chagué-Goff, C; Gomez, C; Hart, DE; Fierro, D; Jacobsen, GE; Zawadzki, AIn the absence of eyewitness reports or clear sedimentary structures, it can be difficult to interpret tsunami deposits or reconstruct tsunami inundation patterns. The emplacement dynamics of two historical tsunami deposits were investigated at seven transects in Okains Bay, New Zealand, using a combined geospatial, geomagnetic and sedimentological approach. The tsunami deposits are present as layers of sand and silt intercalated between soils and become finer and thinner with distance inland. The deposits are attributed to the 1960 and possibly the 1868 tsunamis, based on radiometric dating and correlation with historical records. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) and particle size were used to reconstruct the evolution of flow dynamics laterally and vertically. A combination of statistical methods, including spatial autocorrelation testing, Spearman's rank order correlation, Principal Component Analysis (PCA) and K-means cluster analysis, was applied to examine relationships between MF parameters and sediment texture, and infer depositional hydrodynamics. Flow patterns deduced from MF show the estuary channel acted as a conduit for inundation, with flow commonly aligned sub-perpendicular to the estuary bed. MF and sediment data suggest deposition occurred from settling during laminar flow. Evidence of both uprush and backwash deposition, as well as wave reflection from infrastructure, was found. Statistical analysis of data showed significant relationships between grain size parameters and MF parameters associated with flow speed and magnetic fabric type. PCA and cluster analysis differentiated samples into two primary hydrodynamic groups: (1) samples deposited from laminar flow; and (2) samples deposited close to the limit of inundation, which includes samples deposited further inland, those affected by flow convergence, and those in the upper part of tsunami deposits. This approach has potential as a tool for reconstructing hydrodynamic conditions for palaeotsunamis and by combining spatial and statistical analyses, large-scale investigations can be more easily performed. Copyright © 2016 John Wiley & Sons, Ltd.
- ItemIncremental accretion of a sandy reef island over the past 3000 years indicated by component-specific radiocarbon dating(American Geophysical Union, 2007-02-06) Woodroffe, CD; Samosorn, B; Hua, Q; Hart, DELow-lying reef islands appear particularly threatened by anticipated sea-level rise, and determining how they formed and whether they are continuing to accumulate sediment is essential for their sustainable management. Depositional chronology of Warraber Island, a small sand cay in Torres Strait, Australia, is re-examined based on AMS radiocarbon dating of specific skeletal components. Whereas radiometric dating of bulk sand samples indicated one or more discrete phases of mid-late Holocene deposition, component-specific AMS radiocarbon dating of sand grains indicates sustained incremental growth over the past 3000 years. Ages on gastropods that lived on the reef flat around the island indicate continuing sediment production and island progradation, in contrast to bulk ages and other components produced at greater distances. Growth of sand cays depends on the rate and pattern of sediment supply, which are functions of the local ecology of the surrounding reef and reef flat, and hydrodynamic constraints. © 2007, American Geophysical Union
- ItemReconstructing flow patterns from tsunami deposits with no visible sedimentary structure(American Geophysical Union, 2014-01-01) Kain, CL; Chagué-Goff, C; Goff, JR; Wassmer, P; Gomez, CA; Hart, DEHigh energy coastal events, such as tsunamis, commonly leave sediment deposits in the landscape that may be preserved in the geological record. A set of anomalous sand and silt layers intercalated between soil units was identified alongside an estuary in Okains Bay, Banks Peninsula, New Zealand. Okains Bay, comprised of a coastal plain of Holocene progradational dune ridges, was flooded by tsunamis in 1868 and 1960. Previous research has assessed the relationship between tsunami flow patterns and sediment deposits for recent events, and we aim to extend this application to older deposits where flow patterns were not recorded and sedimentary structures are not visually apparent. A multi-proxy approach was used to investigate the sediment deposits at twelve sites along a 2 km length of the estuary margin and map inundation patterns. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) were used to determine the flow direction during deposition, alongside stratigraphy and particle size analyses to assess wave energy. Flow direction results were overlaid on a digital elevation model of the study site to interpret flow patterns. Deposits became thinner and particle size decreased with distance from the coast, indicating waning flow energy with distance inland. MF results indicate that inundation occurred via the estuary channel, with primary flow directions oriented perpendicular or sub-perpendicular to the channel at each site. On a smaller scale, results showed evidence of current reversal at some sites, with flow directed alternately away from and towards the estuary channel. This is consistent with uprush and backwash patterns observed in tsunami wave sequences. Topographic control of flow patterns is also evident from the data. This research demonstrates a method for investigating older, structurally-degraded deposits and has implications for the reconstruction of paleotsunami inundation from their sedimentary deposits. © AGU