Browsing by Author "Hamilton, JL"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemPreservation of terrestrial microorganisms and organics within alteration products of chondritic meteorites from the Nullarbor Plain, Australia(Mary Ann Liebert, Inc., 2022-04-13) Tait, AW; Wilson, SA; Tomkins, AG; Hamilton, JL; Gagen, EJ; Holman, AI; Grice, K; Preston, LJ; Paterson, DJ; Southam, GMeteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite–gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change. © 2022 Mary Ann Liebert, Inc
- ItemTotal scattering measurements at the Australian Synchrotron Powder Diffraction beamline: capabilities and limitations(International Union of Crystallography, 2023-03-01) D'Angelo, AM; Brand, HEA; Mitchell, VD; Hamilton, JL; Oldfield, DT; Liu, ACY; Gu, QFThis study describes the capabilities and limitations of carrying out total scattering experiments on the Powder Diffraction (PD) beamline at the Australian Synchrotron, ANSTO. A maximum instrument momentum transfer of 19 Å−1 can be achieved if the data are collected at 21 keV. The results detail how the pair distribution function (PDF) is affected by Qmax, absorption and counting time duration at the PD beamline, and refined structural parameters exemplify how the PDF is affected by these parameters. There are considerations when performing total scattering experiments at the PD beamline, including (1) samples need to be stable during data collection, (2) highly absorbing samples with a μR > 1 always require dilution and (3) only correlation length differences >0.35 Å may be resolved. A case study comparing the PDF atom–atom correlation lengths with EXAFS-derived radial distances of Ni and Pt nanocrystals is also presented, which shows good agreement between the two techniques. The results here can be used as a guide for researchers considering total scattering experiments at the PD beamline or similarly setup beamlines. © 2023 The Authors - Open Access CC-BY Licence 4.0
- ItemTotal scattering measurements at the Australian Synchrotron Powder Diffraction beamline: capabilities and limitations(Australian Nuclear Science and Technology Organisation, 2021-11-24) D'Angelo, AM; Gu, QF; Brand, HEA; Mitchell, VD; Hamilton, JL; Liu, ACY; Oldfield, DTThe PD beamline at the Australian Synchrotron (ANSTO) consistently receives requests to carry out total scattering experiments for various materials including battery electrodes, piezoelectrics and coordination frameworks. In this study we describe the capabilities and limitations of carrying out total scattering experiments on the Powder Diffraction beamline. A maximum instrument momentum transfer of 19 Å-1 can be achieved. Our results detail how the pair distribution function is affected by Qmax, absorption, and counting time duration at the PD beamline. We also trial a variable counting time strategy using the Mythen II detector. Refined structural parameters exemplify how the PDF is affected by these parameters. Total scattering experiments can be carried out at PD although there are limitations. These are: (1) only measurements on stable systems and at non-ambient conditions is possible if the temperature is held during data collection, (2) it is essential to dilute highly absorbing samples (μR>1), and (3) only correlation lengths >0.35 Å may be resolved. A case study comparing the PDF atom-atom correlation lengths with EXAFS derived radial distances of Ni and Pt nanoparticles is also presented, which shows good agreement between the two techniques. The results here can be used as a guide for researchers considering total scattering experiments at the PD beamline. © The Authors