Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Haberlah, D"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Late quaternary palaeoenvironmental change in the Australian drylands
    (Elsevier, 2013-08-15) Fitzsimmons, KE; Cohen, TJ; Hesse, PP; Jansen, JD; Nanson, GC; May, JH; Barrows, TT; Haberlah, D; Hilgers, A; Kelly, T; Larsen, JR; Lomax, J; Treble, PC
    In this paper we synthesise existing palaeoenvironmental data from the arid and semi-arid interior of the Australian continent for the period 40–0 ka. Moisture is the predominant variable controlling environmental change in the arid zone. Landscapes in this region respond more noticeably to changes in precipitation than to temperature. Depending on their location, arid zone records broadly respond to tropical monsoon-influenced climate regimes, the temperate latitude westerly systems, or a combination of both. The timing and extent of relatively arid and humid phases vary across the continent, in particular between the westerly wind-controlled temperate latitudes, and the interior and north which are influenced by tropically sourced precipitation. Relatively humid phases in the Murray-Darling Basin on the semi-arid margins, which were characterised by large rivers most likely fed by snow melt, prevailed from 40 ka to the Last Glacial Maximum (LGM), and from the deglacial to the mid Holocene. By contrast, the Lake Eyre basin in central Australia remained relatively dry throughout the last 40 ka, with lake high stands at Lake Frome around 35–30 ka, and parts of the deglacial period and the mid-Holocene. The LGM was characterised by widespread relative aridity and colder conditions, as evidenced by extensive desert dune activity and dust transport, lake level fall, and reduced but episodic fluvial activity. The climate of the deglacial period was spatially divergent. The southern part of the continent experienced a brief humid phase around ∼17–15 ka, followed by increased dune activity around ∼14–10 ka. This contrasts with the post-LGM persistence of arid conditions in the north, associated with a lapsed monsoon and reflected in lake level lows and reduced fluvial activity, followed by intensification of the monsoon and increasingly effective precipitation from ∼14 ka. Palaeoenvironmental change during the Holocene was also spatially variable. The early to mid-Holocene was, however, generally characterised by moderately humid conditions, demonstrated by lake level rise, source-bordering dune activity, and speleothem growth, persisting at different times across the continent. Increasingly arid conditions developed into the late Holocene, particularly in the central arid zone. © 2012 Elsevier Ltd.
  • No Thumbnail Available
    Item
    ‘Of droughts and flooding rains’: an alluvial loess record from central South Australia spanning the last glacial cycle
    (Geological Society of London, 2010-01-01) Haberlah, D; Glasby, P; Williams, MAJ; Hill, SM; Williams, F; Rhodes, EJ; Gostin, V; O'Flaherty, A; Jacobsen, GE
    Deposits of proximal dust-derived alluvium (alluvial loess) within the catchments of the now semi-arid Flinders Ranges in South Australia record regionally synchronous intervals of fluvial entrainment, aggradation and down-cutting spanning the last glacial cycle. Today, these floodplain remnants are deeply entrenched and laterally eroded by ephemeral traction load streams. The north–south aligned ranges are strategically situated within the present-day transitional zone, receiving both topographically enhanced winter rainfall from the SW and convectional downpours from summer monsoonal incursions from the north. We develop a regional chronostratigraphy of depositional and erosional events emphasizing the Last Glacial Maximum (LGM). Based on 124 ages (94 accelerator mass spectrometry radiocarbon and 30 optically stimulated luminescence) from the most significant terrace remnants on both sides of the Ranges, we conclude that the last glacial cycle including the LGM was characterized by major environmental changes. Two pronounced periods of pedogenesis between c. 36 and 30 ka were followed by widespread erosion and reworking. A short-lived interval of climatic stability before c. 24 ka was followed by conditions in which large amounts of proximal dust (loess) were deposited across the catchments. These loess mantles were rapidly redistributed and episodically transported downstream by floods. The termination of this regime c. 18–16 ka was marked by rapid incision. © 2010, Geological Society of London
  • Loading...
    Thumbnail Image
    Item
    Quantifying respirable crystalline silica in the ambient air of the Hunter Valley, NSW - sorting the silica from the silicon
    (The Clean Air Society of Australia and New Zealand, 2011-07-31) Morrison, AN; Nelson, PF; Stelcer, E; Cohen, DD; Haberlah, D
    Crystalline forms of silica are known to cause lung damage for which there is no effective treatment. Silicon is abundant in crustal material and silicates are the single largest mineral grouping, with silica (SiO2) being the most abundant crustal compound. Media reports of high levels of silicon in particles in the air in the vicinity of Hunter Valley open-cut coal mines have caused community anxiety and concerns about potential health impacts on local populations. An extensive sampling campaign using continuous air quality monitoring and targeted collection of particles has been carried out in an area close to mining operations. It was determined that silicon as silica was present in the ambient air, although the concentrations of crystalline silica measured suggest that it should not should cause health problems even for sensitive individuals within the general population. The results of the research should inform more rigorous discussions of air quality management plans for fine particles in the Hunter Valley and aid discussions of community concerns over the potential health impacts of coal mining.© 2011-Clean Air Society of Australia & New Zealand

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback