Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Guo, XW"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural eEvolution of LiFePO(4)
    (American Chemical Society, 2012-05-09) Sharma, N; Guo, XW; Du, GD; Guo, ZP; Wang, JZ; Wang, ZX; Peterson, VK
    Lithium-ion batteries power many portable devices and in the future are likely to play a significant role in sustainable-energy systems for transportation and the electrical grid. LiFePO(4) is a candidate cathode material for second-generation lithium-ion batteries, bringing a high rate capability to this technology. LiFePO(4) functions as a cathode where delithiation occurs via either a solid-solution or a two-phase mechanism, the pathway taken being influenced by sample preparation and electrochemical conditions. The details of the delithiation pathway and the relationship between the two-phase and solid-solution reactions remain controversial. Here we report, using real-time in situ neutron powder diffraction, the simultaneous occurrence of solid-solution and two-phase reactions after deep discharge in nonequilibrium conditions. This work is an example of the experimental investigation of nonequilibrium states in a commercially available LiFePO(4) cathode and reveals the concurrent occurrence of and transition between the solid-solution and two-phase reactions. © 2012, American Chemical Society.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback