Browsing by Author "Guo, L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAntiferromagnetic topological insulating state in Tb0.02Bi1.08Sb0.9Te2S single crystals(American Physical Society (APS), 2023-03-13) Guo, L; Zhao, WY; Li, Q; Xu, M; Chen, L; Bake, A; Vu, THY; He, YH; Fang, Y; Cortie, DL; Mo, SK; Edmonds, MT; Wang, XL; Dong, S; Karel, J; Zheng, RKTopological insulators are emerging materials with insulating bulk and symmetry protected nontrivial surface states. One of the most fascinating transport behaviors in a topological insulator is the quantized anomalous Hall insulator, which has been observed in magnetic-topological-insulator-based devices. In this work, we report a successful doping of rare earth element Tb into Bi1.08Sb0.9Te2S topological insulator single crystals, in which the Tb moments are antiferromagnetically ordered below ∼10 K. Benefiting from the in-bulk-gap Fermi level, transport behavior dominant by the topological surface states is observed below ∼150 K. At low temperatures, strong Shubnikov-de Haas oscillations are observed, which exhibit 2D-like behavior. The topological insulator with long range magnetic ordering in rare earth doped Bi1.08Sb0.9Te2S single crystal provides an ideal platform for quantum transport studies and potential applications. ©2023 American Physical Society.
- ItemTopological insulator VxBi1.08-x Sn0.02Sb0.9Te2S as a promising n-type thermoelectric material(Elsevier, 2022-10) Chen, L; Zhao, WY; Li, M; Yang, G; Guo, L; Bake, A; Liu, P; Cortie, DL; Zheng, RK; Cheng, ZX; Wang, XLAs one of the most important n-type thermoelectric (TE) materials, Bi2Te3 has been studied for decades, with efforts to enhance the thermoelectric performance based on element doping, band engineering, etc. In this study, we report a novel bulk-insulating topological material system as a replacement for n-type Bi2Te3 materials: V doped Bi1.08Sn0.02Sb0.9Te2S (V:BSSTS). The V:BSSTS is a bulk insulator with robust metallic topological surface states. Furthermore, the bulk band gap can be tuned by the doping level of V, which is verified by magnetotransport measurements. Large linear magnetoresistance is observed in all samples. Excellent thermoelectric performance is obtained in the V:BSSTS samples, e.g., the highest figure of merit ZT of ~ 0.8 is achieved in the 2% V doped sample (denoted as V0.02) at 530 K. The high thermoelectric performance of V:BSSTS can be attributed to two synergistic effects: (1) the low conductive secondary phases Sb2S3, and V2S3 are believed to be important scattering centers for phonons, leading to lower lattice thermal conductivity; and (2) the electrical conductivity is increased due to the high-mobility topological surface states at the boundaries. In addition, by replacing one third of costly tellurium with abundant, low-cost, and less-toxic sulfur element, the newly produced BSSTS material is inexpensive but still has comparable TE performance to the traditional Bi2Te3-based materials, which offers a cheaper plan for the electronics and thermoelectric industries. Our results demonstrate that topological materials with unique band structures can provide a new platform in the search for new high performance TE materials. © 2022 Elsevier B.V.