Browsing by Author "Griffiths, GJ"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAnisotropy in the thermal expansion of uranium silicide measured by neutron diffraction(Elsevier, 2018-09) Obbard, EG; Johnson, KD; Burr, PA; Lopes, DA; Liss, KD; Griffiths, GJ; Scales, N; Middleburgh, SCIn-situ neutron diffraction patterns were collected for a sample of as-cast U3Si2 during heating to 1600 °C. Anomalous changes were observed above 1000 °C, including the formation of a new diffraction peak not belonging to P4/mbm U3Si2, unequal changes in the peak intensities and onset of anisotropic lattice expansion. The large data-set enabled derivation of a function-fitted isotropic thermal expansion coefficient to high precision, in close agreement with previous dilatometry results but reducing linearly with temperature over the studied interval. Anisotropy in the instantaneous lattice thermal expansion corresponded to anomalies reported by White et al. (2015) at a similar temperature. © Elsevier B.V
- ItemANSTO Nuclear Foresnics Research Facility: method development and applications(Australian Nuclear Science and Technology Organisation, 2012-10-16) Wotherspoon, ATL; Hill, DM; Keegan, EA; Evans, T; Blagojevic, N; Loi, E; Toole, K; Griffiths, GJ; Smith, KL; Reinhard, MIThe IAEA defines nuclear forensic science, commonly shortened to “nuclear forensics” as ‘the scientific analysis of nuclear or other radioactive material, or of other evidence that is contaminated with radioactive material, in the context of legal proceedings, including administrative, civil, criminal or international law’1. In broad terms, the job of the nuclear forensic scientist is to support investigations that involve a nuclear security event. Nuclear forensic examinations will provide information to key questions posed by the investigative authority: What is it? How much is there? Is there any more out there? Is it ours? As an investigation proceeds other questions that may arise are; How old is it? What contaminants are present? Does it pose a threat? Who is responsible for the loss? Where did the material come from? Many of the techniques required to answer these questions are based on environmental radiochemistry. The Nuclear Forensic Research Facility (NFRF) at ANSTO is developing expertise in analysing nuclear and other radioactive material material based upon the precepts of the ‘model action plan’ of the International Technical Working Group for Nuclear Forensics (ITWG) and other best practices. We are also investigating the validity of traditional forensic techniques (like fingerprints and DNA) on evidence contaminated with radioactive material alongside more novel parameters, e.g. the isotopic composition at the ‘bulk’ material and the micro scale using advanced micro-analytical techniques. We are moving towards the integration of a range of radio analytical techniques such as mass spectrometry, electron microscopy and the simulation/modelling of material production signatures, to provide a range of different information streams to assist attribution. With each advance in our technical competencies we enhance our means to ensure the security of nuclear or other radioactive material.
- ItemCation antisite disorder in uranium-doped gadolinium zirconate pyrochlores(Elsevier, 2014-09-01) Gregg, DJ; Zhang, ZM; Thorogood, GJ; Kennedy, BJ; Kimpton, JA; Griffiths, GJ; Guagliardo, PR; Lumpkin, GR; Vance, ERThe incorporation of uranium into gadolinium zirconate (Gd2Zr2O7) is investigated by synchrotron X-ray powder diffraction and X-ray absorption near-edge structure (XANES) spectroscopy. The results suggest that the uranium cation is largely located on the pyrochlore B-site instead of the targeted A-site. Cation disorder in Gd2Zr2O7 and U-doped Gd2Zr2O7 is investigated by positron annihilation lifetime spectroscopy (PALS) which demonstrates the absence of cation vacancies in these systems. This work provides direct evidence for cation antisite (A- and B-site mixing) disorder in U-doped and off-stoichiometric Gd2Zr2O7 pyrochlore. © 2014, Elsevier B.V.
- ItemIn-situ neutron characterization of advanced nuclear ruels - the road to a new neutron irradiation testing capability(The Minerals, Metals & Materials Society, 2020-02-23) Obbard, EG; Gasparrini, C; Burr, PA; Johnson, KD; Lopes, DA; Anghel, C; Middleburgh, SC; Gregg, DJ; Liss, KD; Griffiths, GJ; Scales, N; Thorogood, GJ; Lumprin, GRNot available.
- ItemIncorporation of Ba in Al and Fe pollucite(Elsevier B.V., 2016-09-01) Vance, ER; Gregg, DJ; Griffiths, GJ; Gaugliardo, PR; Grant, CBa, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs(1−2x)BaxAlSi2O6 aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl2Si2O8 phases. The effect of Ba substitution in pollucite-structured CsFeSi2O6 was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe2+ formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs+ + Fe3+ ↔ Ba2+ + Ni2+ scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi2O6 to be very leach resistant. © 2016 Elsevier B.V.
- ItemLeaching behaviour of and Cs disposition in a UMo powellite glass–ceramic(Elsevier, 2014-05) Vance, ER; Davis, J; Olufson, KP; Gregg, DJ; Blackford, MG; Griffiths, GJ; Farnan, J; Sullivan, J; Sprouster, D; Campbell, C; Hughes, JA UMo powellite glass–ceramic designed by French workers to immobilise Mo-rich intermediate-level waste was found to be quite leach resistant in water at 90 °C with the dissolution of Cs, Mo, Na, B and Ca not exceeding 2 g/L in normalised PCT tests. 133Cs solid state nuclear magnetic resonance and scanning electron microscopy (SEM) showed the Cs to inhabit the glass phase. The microstructures were not greatly affected by cooling rates between 1 and 5 °C/min or by introducing 10 times as much Cs and Sr. Protracted leach tests at 90 °C showed surface alteration as evidenced by SEM and particularly transmission electron microscopy; the main alteration phase was a Zn aluminosilicate but several other alteration phases were evident. Voidage in the alteration layers was indicated from enhanced lifetimes in po sitron annihilation lifetime spectroscopy. © 2014, Elsevier B.V.
- ItemMicroporous gold: comparison of textures from nature and experiments(American Mineralogist, 2014-05-15) Okrugin, VM; Andreeva, E; Etschmann, BE; Pring, A; Li, P; Zhao, J; Griffiths, GJ; Lumpkin, GR; Triani, G; Brugger, JRecent experiments have shown that microporous gold can be obtained via the oxidative dealloying of Au(Ag)-tellurides such as calaverite (AuTe2), krennerite (Au3AgTe8), and sylvanite [(Au,Ag)2Te4] under mild hydrothermal conditions. The same Au textures have been found in natural gold-telluride ores from the Late Miocene epithermal Aginskoe Au-Ag-Te deposit in Kamchatka, Russia. This confirms that natural microporous gold can form via the replacement of telluride minerals. This replacement may take place under hydrothermal conditions, e.g., during the late stage of the ore-depositing event, explaining the wide distribution of “mustard gold” in some deposits. At Aginskoe, the oxidation of Au-tellurides appears to have resulted only in local redistribution of Au and Te, because the associated oxidation of chalcopyrite scavenged the excess Te, inhibiting the crystallization of secondary Te minerals more than a few micrometers in size. Such cryptic mobility may explain the lack of reported secondary Te minerals in many Te-bearing deposits. © 2014, Mineralogical Society of America.
- ItemThermal expansion and steam oxidation of uranium mononitride analysed via in situ neutron diffraction(Elsevier B. V., 2023-03) Liu, J; Gasparrini, C; White, JT; Johnson, KD; Lopes, DA; Peterson, VK; Studer, AJ; Griffiths, GJ; Lumpkin, GR; Wenman, MR; Burr, PA; Sooby, ES; Obbard, EGIn situ neutron powder diffraction experiments are applied to physical, kinetic, and microstructural characterization of uranium mononitride as a promising light water reactor fuel material. The temperature-variable coefficient of thermal expansion and isotropic Debye Waller factors are obtained by sequential Rietveld refinement over 499–1873 K. Oxidation of a UN pellet (95.2% density) under flow of 11 mg/min D2O is observed to initiate above 623 K and the rate increases by a factor of approximately 10 from 673 to 773 K, with activation energy 50.6 ± 1.3 kJ/mol; uranium oxide is the only solid corrosion product. Crown Copyright © 2022 Published by Elsevier B.V.