Browsing by Author "Goodwin, ID"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemBuilding a future on knowledge from the past: what paleo-science can reveal about climate change and its potential impacts in Australia(Commonwealth Scientific and Industrial Research Organisation, 2005-06) Harle, KJ; Etheridge, DM; Whetton, P; Jones, R; Hennessy, K; Goodwin, ID; Brooke, BP; van Ommen, TD; Barbetti, M; Barrows, TT; Chappell, J; De Deckker, P; Fink, D; Gagan, MK; Haberle, SG; Heijnis, H; Henderson-Sellers, A; Hesse, PP; Hope, GS; Kershaw, P; Nicholls, NIn Australia, high quality instrumental climate records only extend back to the late 19th century and therefore only provide us with a brief snapshot of our climate, its mean state and its short-term variability. Palaeo-records extend our knowledge of climate back beyond the instrumental record, providing us with the means of testing and improving our understanding of the nature and impacts of climate change and variability in Australia. There is a vast body of palaeo-records available for the Australian region (including Antarctica), ranging from continuous records of sub-decadal up to millennial scale (such as those derived from tree rings, speleothems, corals, ice cores, and lake and marine sediments) through to discontinuous records representing key periods in time (such as coastal deposits, palaeo-channels, glacial deposits and dunes). These records provide a large array of evidence of past atmospheric, terrestrial and marine environments and their varying interactions through time. There are a number of key ways in which this evidence can, in turn, be used to constrain uncertainties about climate change and its potential impacts in Australia.
- ItemCharacterization of insoluble nanoparticles in Antarctic ice cores(American Geophysical Union, 2013-12-09) Ellis, A; Edwards, R; van Riessen, A; Saunders, M; Smith, AM; Curran, MAJ; Goodwin, ID; Feiteng, WInsoluble nanoparticles in the form of aerosols have significant effects on climate and biogeochemical cycles. Records of these aerosols are essential for understanding paleoclimate forcing and future climate change. These particles and their precursors are emitted to the atmosphere from a variety of primary and secondary sources including biomass burning as well as biogenic, anthropogenic, volcanic, extraterrestrial, and terrestrial mineral emissions. While a large body of research exists with respect to mineral dust particles (on the micrometer scale) derived from ice and sediment cores, very little is known with regards to the history of insoluble particles on the nano scale. Ice core records are the only reliable way to study the past history of these particles. Here, we will present new data regarding the physical and chemical properties of nanoparticles found in ice cores from East Antarctica.
- ItemCharacterization of insoluble nanoparticles in ice cores from Law Dome, East Antarctica(Department of Environment Australian Antartic Division, 2013-06-24) Ellis, A; Edwards, R; van Riessen, A; Smith, AM; Curran, MAJ; Goodwin, ID; Feiteng, WInsoluble nanoparticles, in the form of aerosols, have significant affects on climate and biogeochemical cycles. Records of these aerosols are essential for understanding paleoclimate forcing and future climate change. While a large body of research exists with respect to mineral dust particles (micron scale) derived from ice cores and sediment cores, very little is known with regards to the history of insoluble nanoparticles. These particles and their precursors are emitted to the atmosphere from a variety of primary and secondary sources including biomass burning, biogenic, anthropogenic, volcanic, and terrestrial mineral emissions. Ice core records are the only reliable way to study the past history of these particles. Here, we will present new data with regards to the physical and chemical properties of these particles as found in the Law Dome ice core, DSS0506 from East Antarctica.
- ItemCharacterizing black carbon in rain and ice cores using coupled tangential flow filtration and transmission electron microscopy(European Geosciences Union, 2015-01-01) Ellis, A; Edwards, R; Saunders, M; Chakrabarty, RK; Subramanian, R; van Riessen, A; Smith, AM; Lambrinidis, D; Nunes, LJ; Vallelonga, P; Goodwin, ID; Moy, AD; Curran, MAJ; van Ommen, TDAntarctic ice cores have been used to study the history of black carbon (BC), but little is known with regards to the physical and chemical characteristics of these particles in the remote atmosphere. Characterization remains limited by ultra-trace concentrations in ice core samples and the lack of adequate methods to isolate the particles unaltered from the melt water. To investigate the physical and chemical characteristics of these particles, we have developed a tangential flow filtration (TFF) method combined with transmission electron microscopy (TEM). Tests using ultrapure water and polystyrene latex particle standards resulted in excellent blanks and significant particle recovery. This approach has been applied to melt water from Antarctic ice cores as well as tropical rain from Darwin, Australia with successful results: TEM analysis revealed a variety of BC particle morphologies, insoluble coatings, and the attachment of BC to mineral dust particles. The TFF-based concentration of these particles has proven to give excellent results for TEM studies of BC particles in Antarctic ice cores and can be used for future studies of insoluble aerosols in rainwater and ice core samples. © Author(s)
- ItemIndividual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall(John Wiley & Sons, Inc, 2016-11-04) Ellis, A; Edwards, R; Saunders, M; Chakrabarty, RK; Subramanian, R; Timms, NE; van Riessen, A; Smith, AM; Lambrindis, D; Nunes, LJ; Vallelonga, P; Goodwin, ID; Moy, AD; Curran, MAJ; van Ommen, TDBlack carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest significant changes in the global BC aerosol distribution due to human activity. However, little is known regarding BC's atmospheric distribution or aged particle characteristics before the twentieth century. Here we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and association with metals. In addition to conventionally occurring BC aggregates, we observed single BC monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted for in atmospheric models of BC. ©2016. American Geophysical Union.
- ItemModern to Glacial Age subglacial meltwater drainage at Law Dome, coastal East Antarctica from topography, sediments and jökulhlaup observations(The Geological Society of London, 2017-07-12) Goodwin, ID; Roberts, JL; Etheridge, DM; Hellstrom, JC; Moy, AD; Ribo, M; Smith, AMRare jökulhlaup events, also known as subglacial lake outburst flood events, have been observed at the Law Dome ice margin and provide an insight into the physical characteristics of subglacial meltwater and drainage. The subglacial topography based on data from the BEDMAP2 and ICECAP projects, together with subsurface transects of the ice margin obtained using ground-penetrating radar, reveal several lakes and lake-like depressions and the drainage pathways of two jökulhlaup events. Oxygen isotope typing of the meltwater during the most recent (2014) jökulhlaup event, combined with ice margin stratigraphy, enable the identification of ice tunnel melt pathways that exploit the 30–90° dipping basal ice layering. The presence of subglacial meltwater beneath Law Dome during the Holocene to Glacial periods is confirmed by the dendritic drainage pattern in the subglacial morphology and extensive layers of basal regelation ice and subglacial carbonate precipitate deposits found within the Løken Moraines sediments. These subglacial carbonates, including ooid layers, formed from the mixing of glacial meltwater and seawater at 72 ka BP. The combined evidence indicates that the ocean discharge of subglacial meltwater may be variable and/or is periodically blocked by basal freezing events near the ice sheet terminus. © 2018 The Author(s). Published by The Geological Society of London.
- ItemRetreat history of the East Antarctic ice sheet since the last glacial maximum(Elsevier, 2014-09-15) Mackintosh, AN; Verleyen, E; O'Brian, PE; White, DA; Jones, RS; McKay, RM; Dunbar, R; Gore, DB; Fink, D; Post, AL; Miura, H; Leventer, A; Goodwin, ID; Hodgson, DA; Lilly, K; Crosta, X; Golledge, NR; Wagner, B; Berg, S; van Ommen, TD; Zwartz, D; Roberts, SJ; Vyverman, W; Massé, GThe East Antarctic Ice Sheet (EAIS) is the largest continental ice mass on Earth, and documenting its evolution since the Last Glacial Maximum (LGM) is important for understanding its present-day and future behaviour. As part of a community effort, we review geological evidence from East Antarctica that constrains the ice sheet history throughout this period (∼30,000 years ago to present). This includes terrestrial cosmogenic nuclide dates from previously glaciated regions, 14C chronologies from glacial and post-glacial deposits onshore and on the continental shelf, and ice sheet thickness changes inferred from ice cores and continental-scale ice sheet models. We also include new 14C dates from the George V Land – Terre Adélie Coast shelf. We show that the EAIS advanced to the continental shelf margin in some parts of East Antarctica, and that the ice sheet characteristically thickened by 300–400 m near the present-day coastline at these sites. This advance was associated with the formation of low-gradient ice streams that grounded at depths of >1 km below sea level on the inner continental shelf. The Lambert/Amery system thickened by a greater amount (800 m) near its present-day grounding zone, but did not advance beyond the inner continental shelf. At other sites in coastal East Antarctica (e.g. Bunger Hills, Larsemann Hills), very little change in the ice sheet margin occurred at the LGM, perhaps because ice streams accommodated any excess ice build up, leaving adjacent, ice-free areas relatively unaffected. Evidence from nunataks indicates that the amount of ice sheet thickening diminished inland at the LGM, an observation supported by ice cores, which suggest that interior ice sheet domes were ∼100 m lower than present at this time. Ice sheet recession may have started ∼18,000 years ago in the Lambert/Amery glacial system, and by ∼14,000 years ago in Mac.Robertson Land. These early pulses of deglaciation may have been responses to abrupt sea-level rise events such as Meltwater Pulse 1a, destabilising the margins of the ice sheet. It is unlikely, however, that East Antarctica contributed more than ∼1 m of eustatic sea-level equivalent to post-glacial meltwater pulses. The majority of ice sheet recession occurred after Meltwater Pulse 1a, between ∼12,000 and ∼6000 years ago, during a period when the adjacent ocean warmed significantly. Large tracts of East Antarctica remain poorly studied, and further work is required to develop a robust understanding of the LGM ice sheet expansion, and its subsequent contraction. Further work will also allow the contribution of the EAIS to post-glacial sea-level rise, and present-day estimates of glacio-isostatic adjustment to be refined. © 2014 The Authors. CC-BY Licence.