Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gong, B"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Engineering solvothermal reactions to produce multi-walled carbon nanotubes
    (Springer, 2012-06-01) Choucair, M; Gong, B; Stride, JA
    Large multi-walled carbon nanotubes (MWCNTs) have been synthesized by the reaction of polytetrafluoroethylene and ethanol with metallic lithium under solvothermal conditions. Production of the MWCNTs depends on a series of coupled reactions that utilize the liberation of chemical energy in the thermo-dynamically closed system. Various characterization studies show tubes with diameters of 50-150 nm and micrometer lengths. The interwall spacing was found to be 0.39 +/- 0.04 nm. X-ray photoelectron spectroscopy reveals the tubes are functionalized with up to 2.2 %/wt. fluorine and 6.0 %/wt. oxygen. © 2012, Springer.
  • No Thumbnail Available
    Item
    Versatile and scalable synthesis of graphene nanoribbons
    (Elsevier, 2014-03-15) Choucair, M; Gong, B; Stride, JA
    The inability to readily upscale nanofabrication of carbon nanomaterials often restricts their application, despite outstanding performances reported in both the research laboratory and prototype stages. Here we report the direct chemical synthesis of graphene nanoribbons by a bottom-up approach based on the common laboratory reagents sodium and propanol; these are solvothermally reacted to give an intermediate precursor that is then rapidly pyrolized yielding single- and few-layer graphene nanoribbons. Our results show that confinement of the lateral dimensions of graphene can be achieved simply by varying the alcohol feedstock. The ability to produce bulk quantities of graphene nanoribbons by a low cost and scalable approach is anticipated to enable a wider range of affordable real-world graphene applications. © 2014 Elsevier B.V.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback