Browsing by Author "Georges, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCrystal structure and ionic conductivity of the new cobalt polyphosphate NaCo(PO3)3(Elsevier, 2016-02-01) Ben Smida, Y; Guesmi, A; Georges, S; Avdeev, M; Zid, MFPolycrystalline sample of sodium cobalt triphosphate NaCo(PO3)3 was obtained by solid-state reaction and characterized by X-ray powder diffraction. The title compound is isostructural to NaZn(PO3)3 and its structure was refined by the Rietveld refinement in the cubic system, space group Pa̅, with a=14.2484(4) Å. The obtained structural model is supported by bond valence sum (BVS) and charge distribution (CD) methods. The structure is described as a three-dimensional open-anionic framework built up of corner-sharing CoO6 and PO4 polyhedra with interconnecting channels along the 3-axis, in which the Na+ cations are located. The ionic conductivity measurements are performed on pellets with relative density of 84%. The electrical conductivity is 1.01×10−5 S cm−1 at 480 °C and the activation energy deduced from the slope is 1.1 eV. The correlation between crystal structure and ionic conductivity was studied by the means of the bond-valence-site-energy (BVSE) model. The main result is that sodium transport is made mainly via Na2 and Na3 sites. © 2015 Elsevier Inc.
- ItemSynthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6(Elsevier, 2016-07-01) Ben Smida, Y; Marzouki, R; Georges, S; Kutteh, R; Avdeev, M; Guesmi, A; Zid, MFA new sodium cobalt (II) arsenate Na4Co7(AsO4)6 has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO6, CoO4 and AsO4 polyhedra, with interconnecting channels along [100] in which the Na+ cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz–5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10−5 S cm−1 and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations. © 2016 Elsevier Inc.