Browsing by Author "Gault, B"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemCrystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy(Elsevier, 2015-07-01) Aughterson, RD; Lumpkin, GR; Thorogood, GJ; Zhang, ZM; Gault, B; Cairney, JMThe crystal structures of seven samples of orthorhombic (Pnma) Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy were refined by Rietveld analysis of synchrotron X-ray powder diffraction (S-XRD) data. With increasing size of the lanthanide cation, the lattice parameters increase systematically: c by only ~1.5% whereas both a and b by ~6% from Dy2TiO5 to La2TiO5. The mean Ti–O bond length only increases by ~1% with increasing radius of the Ln cation from Gd to La, primarily due to expansion of the pair of Ti–O3 bonds to opposite corners of the Ti–O5 square based pyramid polyhedra. For Dy2TiO5 and Tb2TiO5, a significant variation in Ti–O1 and Ti–O4 bond lengths results in an increased deformation of the Ti–O5 base. The particular configuration consists of large rhombic shaped tunnels and smaller triangular tunnels along the b axis, which have implications for defect formation and migration caused by radiation damage or the ionic conductivity. © 2017 Elsevier B.V.
- ItemCrystal structure influence on ion-irradiation tolerance of Ln2TiO5 compounds(Engineers Australia, 2014-11-26) Aughterson, RD; Lumpkin, GR; Gault, B; Whittle, KR; de los Reyes, M; Smith, KL; Cairney, JMAs a controllable and reproducible technique ion beam irradiation is routinely used as a method for simulating recoil damage caused by alpha-decay in actinide containing materials and neutron damage within fission and fusion reactor systems [1]. The transition from a crystalline to amorphous structure may lead to larger scale effects in the material properties such as an increase in volume (swelling) linked to the generation and agglomeration of defects and decreased thermodynamic and structural stability. Compounds in this study consist of the nominal stoichiometry Ln2TiO5 (where Ln represents the lanthanide series plus yttrium). There are 4 crystal structure symmetries in this series; orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The final structure is dependent upon the lanthanide size and processing conditions used (pressure and temperature regime) [2]. Ln2TiO5 compounds have been proposed for potential nuclear based applications [3]. For example, Dy2TiO5 has been incorporated into inert matrix fuel as a neutron absorber [4] and Gd2TiO5 has also been proposed for similar use [5] and it’s radiation tolerance has been tested for this purpose [6]. In this study a systematic series of samples of the nominal stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) are used to test and compare the ion-irradiation tolerance of the major structures within the Ln2TiO5 system of compounds. An improved radiation tolerance with the higher symmetry cubic structures was found, which is consistent with previous studies of similar compounds.
- ItemCrystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series(Elsevier, 2014-05) Aughterson, RD; Lumpkin, GR; Reyes, MDL; Sharma, N; Ling, CD; Gault, B; Smith, KL; Avdeev, M; Cairney, JMA series of single phase compounds with nominal stoichiometry Sm(x)Yb(2−x)TiO5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln2TiO5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. © 2014, Elsevier Inc.
- ItemFrom solid solution to cluster formation of Fe and Cr in α-Zr(Elsevier B.V., 2015-12-01) Burr, PA; Wenman, MR; Gault, B; Moody, MP; Ivermark, M; Rushton, MJD; Preuss, M; Edwards, L; Grimes, RWTo understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed. © 2015 Elsevier B.V.
- ItemThe influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2-x)TiO5 series(Elsevier B.V., 2016-04-01) Aughterson, RD; Lumpkin, GR; de los Reyes, M; Gault, B; Baldo, P; Ryan, EA; Whittle, KR; Smith, KL; Cairney, JMThis ion-irradiation study covers the four major crystal structure types in the Ln2TiO5 series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln2TiO5 crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr2+ ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (Dc), which is the irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (Tc), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb2TiO5 and Sm0.6Yb1.4TiO5, were found to be the most radiation tolerant, with Tc values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds. © 2016 Elsevier B.V.
- ItemIon-irradiation resistance of the orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series(Elsevier, 2015-12-01) Aughterson, RD; Lumpkin, GR; Ionescu, M; de los Reyes, M; Gault, B; Whittle, KR; Smith, KL; Cairney, JMThe response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here. © 2017 Elsevier B.V.
- ItemTEM studies of ion-irradiation tolerance in Gd2TiO5(Australian Nanotechnology Network, 2012-02-07) Aughterson, RD; Cairney, JM; Gault, B; Ridgway, MC; Elliman, RG; Lumpkin, GRGd2TiO5 has been identified as a potentially useful material for nuclear based applications such as burnable poison or constituent in waste-forms. A polycrystalline, single phase sample of Gd2TiO5 has been fabricated via the oxide-route reaction. The single phase status and chemical stoichiometry were confirmed using SEM backscattered images, EDS, and laboratory XRD. The structure was confirmed to be orthorhombic, Pnma, space group number 62. The suitability of use for this material in a radioactive environment was tested by in-situ measurement of the materials resistance to transformation from the crystalline to amorphous state via 1MeV Kr2+ ion-irradiation. The in-situ ion-irradiation was carried out using the intermediate voltage electron microscope (IVEM)-Tandem facility at Argonne National Laboratory. The critical dose, Dc, required to render the Gd2TiO5 completely amorphous was determined and the result is compared with other similarly tested materials. Further bulk gold ion-irradiation at various accelerating energies was carried out at the Australian National University using the TANDEM accelerator with damage penetration depth characterised using cross-sectional TEM.