Browsing by Author "Garlea, VO"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGiant magnetic in-plane anisotropy and competing instabilities in Na3Co2SbO6(American Physical Society, 2022-12-02) Li, XT; Gu, YC; Chen, Y; Garlea, VO; Iida, K; Kamazawa, K; Li, YM; Deng, GC; Xiao, Q; Zheng, XQ; Ye, Z; Peng, YY; Zaliznyak, IA; Tranquada, JM; Li, YWe report magnetometry data obtained on twin-free single crystals of Na3Co2SbO6, which is considered a candidate material for realizing the Kitaev honeycomb model for quantum spin liquids. Contrary to a common belief that such materials can be modeled with the symmetries of an ideal honeycomb lattice, our data reveal a pronounced twofold symmetry and in-plane anisotropy of over 200%, despite the honeycomb layer’s tiny orthorhombic distortion of less than 0.2%. We further use magnetic neutron diffraction to elucidate a rich variety of field-induced phases observed in the magnetometry. These phases manifest themselves in the paramagnetic state as diffuse scattering signals associated with competing ferromagnetic and antiferromagnetic instabilities, consistent with a theory that also predicts a quantum spin liquid phase nearby. Our results call for theoretical understanding of the observed in-plane anisotropy and render Na3Co2SbO6 a promising ground for finding exotic quantum phases by targeted external tuning. © Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
- ItemStripy order in buckled honeycomb lattice antiferromagnet Ba2NiTeO6(International Conference on Neutron Scattering, 2017-07-12) Asai, S; Soda, M; Kasatani, K; Ono, T; Avdeev, M; Garlea, VO; Winn, B; Masuda, TBa NiTeO is a rare experimental realization of a buckled honeycomb lattice antiferromagnet. The nearest-neighbor and next-nearest-neighbor interactions in the honeycomb lattice are comparative due to the buckled geometry, leading to magnetic frustration. A magnetic transition is observed at 8.6 K in the susceptibility and heat capacity measurements [1]. The frustration parameter /T is 18.6, where is Weiss temperature and is the magnetic transition temperature. In order to investigate the low temperature state we performed neutron scattering experiments. In the diffraction profile magnetic Bragg peaks are observed at < , and the propagation vector is identified as (0, 1/2,1). Combination of the representation analysis and Rietveld refinement reveals that a collinear stripy structure [2] is realized [3]. Our calculation suggests that the stabilization of the stripy structure instead of spiral structure is ascribed to the competition between magnetic frustration and easy-axis type anisotropy. In the inelastic neutron spectrum at 2 K a magnetic excitation with an energy gap of 2 meV is observed. Spin-wave calculation based on two-dimensional frustrated honeycomb lattice antiferromagnet having easy-axis anisotropy reproduces the experimental data. The obtained parameters are consistent with Weiss temperature estimated from the bulk magnetic susceptibility measurement.