Browsing by Author "Ferlazzo, ML"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMicrogravity × radiation: a space mechanobiology approach toward cardiovascular function and disease(Frontiers Media S.A., 2021-10-29) Basirun, C; Ferlazzo, ML; Howell, NR; Liu, GJ; Middleton, RJ; Martinac, B; Narayanan, SA; Poole, K; Gentile, C; Chou, JIn recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases. © 2021 Basirun, Ferlazzo, Howell, Liu, Middleton, Martinac, Narayanan, Poole, Gentile and Chou.
- ItemSpace radiation and individual radiosensitivity - ANSTO CAS & Human Health in air beam experiments(Australian Nuclear Science and Technology Organisation, 2021-11-26) Ferlazzo, ML; Howell, NR; Liu, GJ; Zahra, D; Middleton, RJ; Foray, NRadiation exposure is a major limiting factor for long duration manned space flights. Radiation protection standards are based on the assumption that individuals are equally resistant to ionizing radiation. However, for over a century, there is evidence that humans do not respond equally to radiation. Particularly, the studies of secondary effects post-radiotherapy have shown a great variability among individuals. More specifically, large discrepancies among astronauts after the same flight were observed. Recently, from a collection of hundreds of fibroblast cell lines derived from patients suffering from genetic disease or post-radiotherapy radiosensitivity, we have shown that the delay in the nucleoshuttling of the ATM protein may cause a lack of double strand break (DSB) recognition, incomplete DSB repair and radiosensitivity. Interestingly, the model of the ATM nucleoshuttling was shown to be relevant not only for low-dose and repeated exposures, but also for high-LET particles, which renders this model compatible with space radiation exposure scenarios. Lastly, this model could lead to a novel approach for radiation protection, consisting of interventions to accelerate ATM nucleoshuttling. Such an approach may help in developing efficient countermeasures that could assist with manned space flights. In 2019-2021, teams from ANSTO CAS and Human Health have been collaborating to adapt the ANTARES beamline for in air irradiation of living matter and study the effects of secondary radiation produced by interraction of cosmic and galactic rays with spacecraft shielding. DNA repair and mitochondrial activity processes will be studied. © 2021 The Authors