Browsing by Author "Fang, Z"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemA3A′3Zn6Te4O24 (A = Na, A′ = rare earth) garnets: A-site ordered noncentrosymmetric structure, photoluminescence, and Na-ion conductivity(American Chemical Society, 2021-11-16) Fang, Z; Jiang, P; Avdeev, M; Wei, H; Wang, R; Jiang, X; Yang, TA large number of oxides that adopt the centrosymmetric (CS) garnet-type structure (space group Ia3̅d) have been widely studied as promising magnetic and host materials. Hitherto, no noncentrosymmetric (NCS) garnet has been reported yet, and a strategy to NCS garnet design is therefore significant for expanding the application scope. Herein, for the series A3A′3Zn6Te4O24 (A = Na, A′ = La, Eu, Nd, Y, and Lu), we demonstrated that the structural symmetry evolution from CS Ia3̅d (A′ = La) to NCS I4122 (A′ = Eu, Nd, Y, and Lu) could be achieved due to the A-site cationic ordering-driven inversion symmetry breaking. Na3A′3Zn6Te4O24 (A′ = rare earth) are the first garnets that possess NCS structures with A-site cationic ordering. Diffuse reflectance spectra and theoretic calculations demonstrated that all these NCS garnets are indirect semiconductors. Moreover, their potential applications as host materials for red phosphors and Na-ion conductors were also investigated in detail, which firmly confirmed the NCS structure and A-site cationic ordering. Our findings have paved the way to design NCS or even polar garnets that show intriguing functional properties, such as ferroelectricity, multiferroicity, and second harmonic generation. © 2021 American Chemical Society