Browsing by Author "Etschmann, BE"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAnatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides(Elsevier, 2021-10-20) Chaudhari, A; Webster, NAS; Xia, F; Frierdich, AJ; Ram, R; Etschmann, BE; Liu, WH; Wykes, JL; Brand, HEA; Brugger, JThe fluid-driven transformation of chalcopyrite (CuFeS2) into Cu-rich sulfides (e.g., digenite, Cu1.8S; covellite, CuS; and chalcocite, Cu2S) is a complex mineral replacement reaction where the reaction pathway is controlled by the interplay between evolving mineral make-up, texture/porosity, and solution chemistry. This trans-formation was investigated in CuCl2 +H2SO4 solutions under mild hydrothermal conditions (180 to 300 ◦C); the reaction kinetics, nature of minerals formed, and oxidation states of aqueous Fe and Cu were followed in-situ in real-time using synchrotron powder X-ray diffraction (PXRD) and X-ray absorption spectroscopy (XAS). These results are corroborated by an analysis of the textures of reaction products from comparative ex-situ quench experiments. The in-situ and ex-situ experiments revealed that: (i) aqueous Cu2+quickly reduced to Cu+ during chalcopyrite replacement in all experiments, and Fe dissolved as Fe2+; (ii) covellite was the first mineral to form, followed by digenite-high with delayed nucleation; and (iii) a non-quenchable hydrated Fe sulfate mineral (szomolnokite, FeSO4.H2O) formed at 240 ◦C at relatively low concentrations of added CuCl2, which supressed the formation of digenite-high. The quantitative mineral phase evolution retrieved using in-situ PXRD was modelled using a novel dual power law (dual Avrami approach). Avrami exponents revealed that chalcopyrite replacement proceeded initially via a 3-dimensional growth mechanism, followed by diffusion-controlled growth. This is consistent with initial formation of a porous covellite rim around chalcopyrite, confirmed by the observation of the ex-situ reaction products, followed by a second reaction stage where the transport properties of aqueous Fe (released from the chalcopyrite) and aqueous Cu (added from the initial solution) to and from the reaction front become the rate-limiting step; and these two kinetic stages exist even where covellite was the only replacement product. The activation energies calculated for these two kinetic stages were 42.9 ±7.4 kJ mol −1 and 39.3 ± 13.1 kJ mol−1, respectively. We conclude that (i) the replacement of chalcopyrite by covellite and digenite proceeds via an interface coupled dissolution and reprecipitation mechanism; (ii) availabilities of aqueous Cu+ and of Fe2+ play a critical role in covellite nucleation and on the sequence of mineral precipitation during chalcopyrite replacement; the Cu+ to Cu2+ ratio is controlled by the kinetics of Cu2+ to Cu+ reduction, which increases with increasing temperature, and by the transport of Cu2+ through the daughter mineral to the reaction front, while Fe2+ availability is limited at high temperature by the formation of insoluble ferrous sulfate; and (iii) this reaction evolves from a bulk fluid-chemistry controlled reaction (initial formation of covellite) to an interface-controlled reaction (digenite-high or further transformation to covellite). The current findings highlight the complex feedback between Cu2+/Cu+ aqueous redox, mineral nucleation, and ion transport properties during replacement reactions, and the applicability of combined in-situ PXRD and XAS techniques in deciphering complex fluid-driven mineral replacement reactions. © 2021 Elsevier B.V
- ItemCharacterization of porosity in sulfide ore minerals: a USANS/SANS study(GeoScience World, 2014-11-18) Xia, F; Zhao, J; Etschmann, BE; Brugger, J; Garvey, CJ; Rehm, C; Lemmel, H; Ilavsky, J; Han, YS; Pring, APorosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less pores in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected. © 2014, Mineralogical Society of America.
- ItemGeomaterials in the age of megapixel imaging(Australian Microscopy and Microanalysis Society, 2016-02-04) Brugger, J; Etschmann, BE; Li, K; Michaut, P; Donner, E; Howard, DLGeological samples are extremely diverse and share a tendency for heterogeneity and complexity. This is especially true for ores and for environmental samples, which result from complex processes in dynamic environments. In recent years, a number of tools that enable imaging element distribution in geological samples at 1-50μm-resolution and over cm2 areas have seen rapid development and have become readily available. The application of synchrotron-based X-ray fluorescence mapping has been limited to addressing key questions because of low availability and high cost. However, recent advances in X-ray fluorescence detector technology are bringing new possibilities to petrology. Millisecond dwell times allow collection of thin-section-size maps in hours, and improvement in data analysis produces quantitative elemental maps. The technique can be combined with XANES imaging to provide additional information about element speciation (e.g., As oxidation state). We illustrate applications of M(egapixel)-μXRF for ore petrology (commodities: Au, Pt, U, Cu, Ge, Ti, REE, Nb), coal petrology, and environmental samples. Examples of outcomes include: (i) the distribution of μm-sized Pt-rich grains and Ti-mobility during schistosity formation at the Fifield Pt prospect (Australia); (ii) confirmation of the two-stage Ge-enrichment in the Barrigão deposit (Portugal), with demonstration of the presence of Ge in solid solution in the early chalcopyrite; (iii) enrichment of U during late dissolution-reprecipitation reactions in the Cu-rich ores of the Moonta and Wallaroo IOCG deposits (Australia); (iv) history of REE-Ti-Nb-(As) mobility during amphibolite to greenschist facies metamorphism in the Binntal Valley, Switzerland; (v) contrasting distribution of As, Ge and W in Ge-rich coals across the Globe; and (vi) evolution of the distribution and speciation of Cu upon aging of biosolids.
- ItemGermanium speciation in experimental and natural sphalerite: Implications for critical metal enrichment in hydrothermal Zn-Pb ores(Elsevier, 2023-02-01) Liu, WH; Mei, Y; Etschmann, BE; Glenn, M; MacRae, CM; Spinks, SC; Ryan, CG; Brugger, J; Paterson, DJThe critical metal germanium (Ge) is recovered as a by-product of mining other commodities, such as zinc and thermal coal. We investigated the Ge incorporation mechanism in sphalerite synthesized under hydrothermal conditions like those of sediment-hosted Zn-Pb deposits. Sphalerite ± galena ± barite formed via reactions of Ge ± Fe ± Cu ± Ba-bearing brine with calcite and reduced sulfur at 200 °C and water vapor-saturated pressure. The products were examined using backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), electron backscattered diffraction (EBSD), synchrotron X-ray fluorescence (SXRF) and micro-X-ray absorption near-edge structure (μ-XANES). We show that Ge(IV) is incorporated into sphalerite and bonded with reduced sulfur, both in the experimental sphalerite and in natural zinc ore samples from the MacArthur River Zn-Pb-Ag deposits, Australia. Copper K-edge XANES spectra show that copper occurs as Cu(I) in the experimental sphalerite, consistent with previous studies on Cu in natural sphalerite. The experiments reveal that Ge(IV) substitution in sphalerite occurs with and without the presence of other metal ions (e.g., Cu(I)), indicating that Ge(IV) substitution can be accommodated via charge balance by vacancies as well as by coupled substitution in the synthesized sphalerite. Ab initio quantum chemical simulations confirm that sphalerite can readily accommodate Ge via charge balance by vacancies and by coupled substitutions, with the crystal structure and average Zn-S, Zn-Zn, S-S distances retained when replacing > 3 mol% of the Zn sites with Ge(IV), Ge(II), Cu(I) or Fe(II), demonstrating the resilience and flexibility of the sphalerite crystal structure. These Ge incorporation mechanisms explain the previous observations of multiple ways of Ge incorporation in natural sphalerite. The study provides experimental and molecular simulation insights for understanding the processes related to the formation and extraction of Ge in zinc ores. 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense
- ItemMicroporous gold: comparison of textures from nature and experiments(American Mineralogist, 2014-05-15) Okrugin, VM; Andreeva, E; Etschmann, BE; Pring, A; Li, P; Zhao, J; Griffiths, GJ; Lumpkin, GR; Triani, G; Brugger, JRecent experiments have shown that microporous gold can be obtained via the oxidative dealloying of Au(Ag)-tellurides such as calaverite (AuTe2), krennerite (Au3AgTe8), and sylvanite [(Au,Ag)2Te4] under mild hydrothermal conditions. The same Au textures have been found in natural gold-telluride ores from the Late Miocene epithermal Aginskoe Au-Ag-Te deposit in Kamchatka, Russia. This confirms that natural microporous gold can form via the replacement of telluride minerals. This replacement may take place under hydrothermal conditions, e.g., during the late stage of the ore-depositing event, explaining the wide distribution of “mustard gold” in some deposits. At Aginskoe, the oxidation of Au-tellurides appears to have resulted only in local redistribution of Au and Te, because the associated oxidation of chalcopyrite scavenged the excess Te, inhibiting the crystallization of secondary Te minerals more than a few micrometers in size. Such cryptic mobility may explain the lack of reported secondary Te minerals in many Te-bearing deposits. © 2014, Mineralogical Society of America.
- ItemNickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts(Elsevier, 2019-12-05) Hens, T; Brugger, J; Etschmann, BE; Paterson, DJ; Brand, HEA; Whitworth, AJ; Frierdich, AJDeep-sea ferromanganese (Fe-Mn) nodules and crusts are rich in traditional and non-traditional metals with both current and emerging economic value. Mn(III,IV) oxides (e.g., phyllomanganates) are important host phases for these metals (e.g., Ni), which are structurally incorporated during nodule and Fe-Mn crust formation. Recrystallization of phyllomanganates can be catalyzed by aqueous Mn(II) (Mn(II)aq) during (bio)geochemical Mn redox cycling. The fate of structurally incorporated metals during such recrystallization of Mn(III,IV) oxides remains, however, poorly constrained. Here, we use a 62Ni isotope tracer to determine the exchangeability of dissolved Ni with structurally incorporated Ni in two deep-sea Fe-Mn nodules and one Fe-Mn crust. Ni exchange between solid and solution was investigated during reactions in 1 mM Mn(II)aq and in Mn(II)-free solutions under variable pH conditions (pH 5.5 and 7.5) over time. Sample characterization shows that all samples are of hydrogenetic or mixed hydrogenetic-diagenetic origin and Ni is preferentially associated with the phyllomanganates. Our Ni exchange experiments reveal that in some samples up to 25% of incorporated Ni is exchangeable with the fluid after 14 days. The prevalent reaction pathways exhibit pH-dependent behavior during phyllomanganate recrystallization and differ between sample types, with Mn(II)aq enhancing Ni exchange in the Fe-Mn crust-fluid system and Ni exchange being independent of Mn(II)aq concentrations in the Fe-Mn nodule-fluid systems. The exchangeability of structurally-incorporated Ni in Fe-Mn nodules and crusts indicates a labile behavior that potentially makes it available for biogeochemical processes in the marine environment. © 2019 Elsevier B.V
- ItemA thermosyphon-driven hydrothermal flow-through cell for in situ and time-resolved neutron diffraction studies(Wiley-Blackwell, 2010-06-01) Xia, F; O'Neill, B; Ngothai, Y; Peak, J; Tenailleau, C; Etschmann, BE; Qian, G; Brugger, J; Studer, AJ; Olsen, SR; Pring, AA flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 ml and can operate at temperatures up to 573 K under autogenous vapor pressures (ca 8.5 × 106 Pa). The fluid flow is driven by a thermosyphon, which is achieved by the proper design of temperature difference around the closed loop. The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti-Zr alloy. The cell has been successfully commissioned on Australia's new high-intensity powder diffractometer WOMBAT at the Australian Nuclear Science and Technology Organization, using two simple phase transformation reactions from KAlSi2O6 (leucite) to NaAlSi2O6·H2O (analcime) and then back from NaAlSi2O6·H2O to KAlSi2O6 as examples. The demonstration proved that the cell is an excellent tool for probing hydrothermal crystallization. By collecting diffraction data every 5 min, it was clearly seen that KAlSi2O6 was progressively transformed to NaAlSi2O6·H2O in a sodium chloride solution, and the produced NaAlSi2O6·H2O was progressively transformed back to KAlSi2O6 in a potassium carbonate solution. © 2010, Wiley-Blackwell.